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FOREWORD 
 

The Saudi Arabian Standards Organization (SASO) has adopted the International 
Organization for Standardization (ISO /1995) “A Guide to Expression of Uncertainty in 
Measurement”.  The text of this international standard has been translated into Arabic 
without any technical alterations for approval as a Saudi standard. 
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GUIDE TO THE EXPRESSION OF  
UNCERTAINTY IN MEASUREMENT 

 

1- SCOPE  
1.1 This Guide establishes general rules for evaluating and expressing uncertainty 

in measurement that can be followed at various levels of accuracy and in many 
fields – from the shop floor to fundamental research.  Therefore, the principles 
of this Guide are intended to be applicable to a broad spectrum of 
measurements, including those required for:  

- maintaining quality control and quality assurance in production; 

- complying with and enforcing laws and regulations; 

- conducting basic research, and applied research and development, in 
science and engineering; 

- calibrating standards and instruments and performing tests throughout a 
national measurement system in order to achieve traceability to national 
standards; 

- developing, maintaining, and comparing international and national 
physical reference standards, including reference materials. 

1.2 This Guide is primarily concerned with the expression of uncertainty in the 
measurement of a well-defined physical quantity – the measurand – that can be 
characterized by an essentially unique value.  If the phenomenon of interest can 
be represented only as a distribution of values or is dependent on one or more 
parameters, such as time, then the measurands required for its description are 
the set of quantities describing that distribution or that dependence. 

1.3 This Guide is also applicable to evaluating and expressing the uncertainty 
associated with the conceptual design and theoretical analysis of experiments, 
methods of measurement, and complex components and systems.  Because a 
measurement result and its uncertainty may be conceptual and based entirely on 
hypothetical data, the term “result of a measurement” as used in this Guide 
should be interpreted in this broader context. 

1.4 This Guide provides general rules for evaluating and expressing uncertainty in 
measurement rather than detailed, technology-specific instructions.  Further, it 
does not discuss how the uncertainty of a particular measurement result, once 
evaluated, may be used for different purposes, for example, to draw conclusions 
about the compatibility of that result with other similar results, to establish 
tolerance limits in a manufacturing process; or to decide if a certain if a certain 
course of action may be safely undertaken.  It may therefore be necessary to 
develop particular standards based on this Guide that deal with the problems 
peculiar to specific fields of measurement or with the various uses of 
quantitative expressions of uncertainty.  These standards may be simplified 
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versions of this Guide but should include the detail that is appropriate to the 
level of accuracy and complexity of the measurements and uses addressed. 

 NOTE – There may be situations in which the concept of uncertainty of measurement is 
believed not to be fully applicable, such as when the precision of a test method is determined 
(see reference [5], for example). 

 

2- DEFINITIONS 
2.1 General metrological terms 
 The definition of a number of general metrological terms relevant to this Guide, 

such as “measurable quantity,” “measurand,” and “error of measurement,” are 
given in annex B.  These definitions are taken from the International vocabulary 
of basic and general terms in metrology (abbreviated VIM) [6].  In addition, 
annex C gives the definitions of a number of basic statistical terms taken mainly 
from International Standard ISO 3534-1 [7].  When one of these metrological or 
statistical terms (or a closely related term) is first used in the text, starting with 
clause 3, it is printed in boldface and the number of the subclause in which it is 
defined is given in parentheses. 

 Because of its importance to this Guide, the definition of the general 
metrological term “uncertainty of measurement” is given both in annex B and 
2.2.3.  The definitions of the most important terms specific to this Guide are 
given in 2.3.1 to 2.3.6.  In all of these subclauses and in annexes B and C, the 
use of parentheses around certain words of some terms means that these words 
may be omitted if this is unlikely to cause confusion. 

2.2 The term “uncertainty” 
 The concept of uncertainty is discussed further in clause 3 and annex D. 

2.2.1 The word “uncertainty” means doubt, and thus in its broadest sense 
“uncertainty of measurement” means doubt about the validity of the result of a 
measurement.  Because of the lack of different words for this general concept of 
uncertainty and the specific quantities that provide quantitative measures of the 
concept, for example, the standard deviation, it is necessary to use the word 
“uncertainty” in these two different senses. 

2.2.2 In this Guide, the word “uncertainty” without adjectives refers both to the 
general concept of uncertainty and to any or all quantitative measures of that 
concept.  When a specific measure is intended, appropriate adjectives are used. 

2.2.3 The formal definition of the term “uncertainty of measurement” developed for 
use in this Guide and in the current VIM [6] (VIM entry 3.9) is as follows: 

 uncertainty (of measurement) 
 parameter, associated with the result of a measurement, that characterizes the 

dispersion of the values that could reasonably be attributed to the measurand. 
 NOTES 

1 The parameter may be, for example, a standard deviation (or a given multiple of it), or the 
half-width of an interval having a stated level of confidence. 
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2 Uncertainty of measurement comprises, in general, many components.  Some of these 
components may be evaluated from the statistical distribution of the results of series of 
measurements and can be characterized by experimental standard deviations.  The other 
components, which also can be characterized by standard deviations, are evaluated from 
assumed probability distributions based on experience or other information. 

3 It is understood that the result of the measurement is the best estimate of the value of the 
measurand, and that all components of uncertainty, including those arising from systematic 
effects, such as components associated with corrections and reference standards, 
contribute to the dispersion. 

2.2.4 The definition of uncertainty of measurement given in 2.2.3 is an operational 
one that focuses on the measurement result and its evaluated uncertainty.  
However, it is not inconsistent with other concepts of uncertainty of 
measurement, such as 

- a measure of the possible error in the estimated value of the measurand as 
provided by the result of a measurement; 

- an estimate characterizing the range of values within which the true value 
of a measurand lies (VIM, first edition, 1984, entry 3.09). 

 Although these two traditional concepts are valid as ideals, they focus on 
unknowable quantities: the “error” of the result of a measurement and the “true 
value” of the measurand (in contrast to its estimated value), respectively.  
Nevertheless, whichever concept of uncertainty is adopted, an uncertainty 
component is always evaluated using the same data and related information.  
(See also E.5.) 

2.3 Terms specific to this Guide 
 In general, terms that are specific to this Guide are defined in the text when first 

introduced.  However, the definitions of the most important of these terms are 
given here for easy reference. 

 NOTE – Further discussion related to these terms may be found as follows: for 2.3.2, see 3.3.3 
and 4.2; for 2.3.3, see 3.3.3 and 4.3; for 2.3.4, see clause 5 and equation (10) and (13); and for 
2.3.5 and 2.3.6, see clause 6. 

2.3.1 standard uncertainty 
 uncertainty of the result of a measurement expressed as a standard deviation. 

2.3.2 Type A evaluation (of uncertainty) 
 method of evaluation of uncertainty by the statistical analysis of series of 

observations. 

2.3.3 Type B evaluation (of uncertainty) 
 method of evaluation of uncertainty by means other than the statistical analysis 

of series of observations. 



SAUDI STANDARD SASO…./2006

٥

2.3.4 combined standard uncertainty 
 standard uncertainty of the result of a measurement when that result is obtained 

from the values of a number of other quantities, equal to the positive square 
root of a sum of terms, the terms being the variances or covariances of these 
other quantities weighted according to how the measurement result varies with 
changes in these quantities. 

2.3.5 expanded uncertainty 
 quantity defining an interval about the result of a measurement that may be 

expected to encompass a large fraction of the distribution of values that could 
reasonably be attributed to the measurand. 

 NOTES 

1 The fraction may be viewed as the coverage probability or level of confidence of the 
interval. 

2 To associate a specific level of confidence with the interval defined by the expanded 
uncertainty requires explicit or implicit assumptions regarding the probability distribution 
characterized by the measurement result and its combined standard uncertainty.  The level 
of confidence that may be attributed to this interval can be known only to the extent to 
which such assumptions may be justified. 

3 Expanded uncertainty is termed overall uncertainty in paragraph 5 of Recommendation 
INC-1 (1980). 

2.3.6 coverage factor 

 numerical factor used as a multiplier of the combined standard uncertainty in 
order to obtain an expanded uncertainty. 

 NOTE – A coverage factor, k, is typically in the range 2 to 3. 

 

3- BASIC CONCEPTS 
 Additional discussion of basic concepts may be found in annex D, which 

focuses on the idea of “true” value, error, and uncertainty and includes 
graphical illustrations of these concepts; and in annex E, which explores the 
motivation and statistical basis for Recommendation INC-1 (1980) upon which 
this Guide rests.  Annex J is a glossary of the principal mathematical symbols 
used throughout the Guide. 

3.1 Measurement 
3.1.1 The objective of a measurement (B.2.5) is to determine the value (B.2.2) of 

the measurand (B.2.9), that is, the value of the particular quantity (B.2.1, 
note 1) to be measured.  A measurement therefore begins with an appropriate 
specification of the measurand, the method of measurement (B.2.7), and the 
measurement procedure (B.2.8). 

 NOTE – The term “true value” (see annex D) is not used in this Guide for the reasons given in 
D.3.5; the terms “value of a measurand” (or of a quantity) and “true value of a measurand” 
(or of a quantity) are viewed as equivalent. 
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3.1.2 In general, the result of a measurement (B.2.11) is only an approximation or 
estimate (C.2.26) of the value of the measurand and thus is complete only 
when accompanied by a statement of the uncertainty (B.2.18) of the estimate. 

3.1.3 In practice, the required specification or definition of the measurand is dictated 
by the required accuracy of measurement (B.2.14).  The measurand should be 
defined with sufficient completeness with respect to the required accuracy so 
that for all practical purposes associated with the measurement its value is 
unique.  It is in this sense that the expression “value of the measurand” is used 
in this Guide. 

 EXAMPLE – If the length of a nominally one-metre long steel bar is to be determined to 
micrometer accuracy, its specification should include the temperature and pressure at which the 
length is defined.  Thus the measurand should be specified as, for example, the length of the bar 
at 25,00oC and 101 325 Pa (plus any other defining parameters deemed necessary, such as the 
way the bar is to be supported).  However, if the length is to be determined to only millimetre 
accuracy, its specification would not require a defining temperature or pressure or a value for 
any other defining parameter. 

 NOTE – Incomplete definition of the measurand can give rise to a component of uncertainty 
sufficiently large that it must be included in the evaluation of the uncertainty of the 
measurement result (see D.1.1, D.3.4, and D.6.2). 

3.1.4 In many cases, the result of a measurement is determined on the basis of series 
of observations obtained under repeatability conditions (B.2.15, note 1). 

3.1.5 Variations in repeated observations are assumed to arise because influence 
quantities (B.2.10) that can affect the measurement result are not held 
completely constant. 

3.1.6 The mathematical model of the measurement that transforms the set of repeated 
observations into the measurement result is of critical importance because, in 
addition to the observations, it generally includes various influence quantities 
that are inexactly known.  This lack of knowledge contributes to the uncertainty 
of the measurement result, as do the variations of the repeated observations and 
any uncertainty associated with the mathematical model itself. 

3.1.7 This Guide treats the measurand as a scalar (a single quantity).  Extension to a 
set of related measurands determined simultaneously in the same measurement 
requires replacing the scalar measurand and its variance (C.2.11, C.2.20, C.3.2) 
by a vector measurand and covariance matrix (C.3.5).  Such a replacement is 
considered in this Guide only in the examples (see H.2, H.3, and H.4). 

3.2 Errors, effects, and corrections 
3.2.1 In general, a measurement has imperfections that give rise to an error (B.2.19) 

in the measurement result.  Traditionally, an error is viewed as having two 
components, namely, a random (B.2.21) component and a systematic (B.2.22) 
component. 

 NOTE – Error is an idealized concept and errors cannot be known exactly. 
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3.2.2 Random error presumably arises from unpredictable or stochastic temporal and 
spatial variations of influence quantities.  The effects of such variations, 
hereafter termed random effects, give rise to variations in repeated observations 
of the measurand.  Although it is not possible to compensate for the random 
error of a measurement result, it can usually be reduced by increasing the 
number of observations; its expectation or expected value (C.2.9, C.3.1) is 
zero. 

 NOTES 

1 The experimental standard deviation of the arithmetic mean or average of a series of 
observations (see 4.2.3) is not the random error of the mean, although it is so designated in 
some publications.  It is instead a measure of the uncertainty of the mean due to random 
effects.  The exact value of the error in the mean arising from these effects cannot be 
known. 

2 In this Guide, great care is taken to distinguish between the terms “error” and 
“uncertainty.”  They are not synonyms, but represent completely different concepts; they 
should not be confused with one another or misused. 

3.2.3 Systematic error, like random error, cannot be eliminated but it too can often be 
reduced.  If a systematic error arises from a recognized effect of an influence 
quantity on a measurement result, hereafter termed a systematic effect, the 
effect can be quantified and, if it is significant in size relative to the required 
accuracy of the measurement, a correction (B.2.23) or correction factor 
(B.2.24) can be applied to compensate for the effect.  It is assumed that, after 
correction, the expectation or expected value of the error arising from a 
systematic effect is zero. 

 NOTE – The uncertainty of a correction applied to a measurement result to compensate for a 
systematic effect is not the systematic error, often termed bias, in the measurement result due to 
the effect as it is sometimes called.  It is instead a measure of the uncertainty of the result due to 
incomplete knowledge of the required value of the correction.  The error arising from imperfect 
compensation of a systematic effect cannot be exactly known.  The terms “error” and 
“uncertainty” should be used properly and care taken to distinguish between them. 

3.2.4 It is assumed that the result of a measurement has been corrected for all 
recognized significant systematic effects and that every effort has been made to 
identify such effects. 

 EXAMPLE – A correction due to the finite impedance of a voltmeter used to determine the 
potential difference (the measurand) across a high-impedance resistor is applied to reduce the 
systematic effect on the result of the measurement arising from the loading effect of the 
voltmeter.  However, the values of the impedances of the voltmeter and resistor, which are used 
to estimate the value of the correction and which are obtained from other measurements, are 
themselves uncertain.  These uncertainties are used to evaluate the component of the 
uncertainty of the potential difference determination arising from the correction and thus from 
the systematic effect due to the finite impedance of the voltmeter. 

 NOTES 

1 Often, measuring instruments and systems are adjusted or calibrated using measurement 
standards and reference materials to eliminate systematic effects; however, the 
uncertainties associated with these standards and materials must still be taken into 
account. 

2 The case where a correction for a known significant systematic effect is not applied to 
discussed in the note to 6.3.1 and in F.2.4.5. 
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3.3 Uncertainty 
3.3.1 The uncertainty of the result of a measurement reflects the lack of exact 

knowledge of the value of the measurand (see 2.2).  The result of a 
measurement after correction for recognized systematic effects is still only an 
estimate of the value of the measurand because of the uncertainty arising from 
random effects and from imperfect correction of the result for systematic 
effects. 

 NOTE – The result of a measurement (after correction) can unknowably be very close to the 
value of the measurand (and hence have a negligible error) even though it may have a large 
uncertainty.  Thus the uncertainty of the result of a measurement should not be confused with 
the remaining unknown error. 

3.3.2 In practice, there are many possible sources of uncertainty in a measurement, 
including: 

a) incomplete definition of the measurand; 

b) imperfect realization of the definition of the measurand; 

c) nonrepresentative sampling – the sample measured may not represent the 
defined measurand; 

d) inadequate knowledge of the effects of environmental conditions on the 
measurement or imperfect measurement of environmental conditions; 

e) personal bias in reading analogue instruments; 

f) finite instrument resolution or discrimination threshold; 

g) inexact values of measurement standards and reference materials; 

h) inexact values of constants and other parameters obtained from external 
sources and used in the data-reduction algorithm; 

i) approximations and assumptions incorporated in the measurement method 
and procedure; 

j) variations in repeated observations of the measurand under apparently 
identical conditions. 

 These sources are not necessarily independent, and some of sources a) to i) may 
contribute to source j).  Of course, an unrecognized systematic effect cannot be 
taken into account in the evaluation of the uncertainty of the result of a 
measurement but contributes to its error. 

3.3.3 Recommendation INC-1 (1980) of the Working Group on the Statement of 
Uncertainties groups uncertainty components into two categories based on their 
method of evaluation, “A” and “B” (see 0.7, 2.3.2, and 2.3.3).  These categories 
apply to uncertainty and are not substitutes for the words “random” and 
“systematic”.  The uncertainty of a correction for a known systematic effect 
may in some cases be obtained by a Type A evaluation while in other cases by a 
Type B evaluation, as may the uncertainty characterizing a random effect. 
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NOTE – In some publications uncertainty components are categorized as “random” and 
“systematic” and are associated with errors arising from random effects and known systematic 
effects, respectively.  Such categorization of components of uncertainty can be ambiguous when 
generally applied.  For example, a “random” component of uncertainty in one measurement 
may become a systematic” component of uncertainty in another measurement in which the 
result of the first measurement is used as an input datum.  Categorizing the methods of 
evaluating uncertainty components rather than the components themselves avoids such 
ambiguity.  At the same time, it does not preclude collecting individual components that have 
been evaluated by the two different methods into designated groups to be used for a particular 
purpose (see 3.4.3). 

3.3.4 The purpose of the Type A and Type B classification is to indicate the two 
different ways of evaluating uncertainty components and is for convenience of 
discussion only; the classification is not meant to indicate that there is any 
difference in the nature of the components resulting from the two types of 
evaluation.  Both types of evaluation are based on probability distributions 
(C.2.3), and the uncertainty components resulting from either type are 
quantified by variances or standard deviations. 

3.3.5 The estimated variance u2 characterizing an uncertainty component obtained 
from a Type A evaluation is calculated from series of repeated observations and 
is the familiar statistically estimated variance s2 (see 4.2).  The estimated 
standard deviation (C.2.12, C.2.21, C.3.3) u, the positive square root of u2, is 
thus u = s and for convenience is sometimes called a Type A standard 
uncertainty.  For an uncertainty component obtained from a Type B evaluation, 
the estimated variance u2 is evaluated using available knowledge (see 4.3), and 
the estimated standard deviation u is sometimes called a Type B standard 
uncertainty. 

 Thus a Type A standard uncertainty is obtained from a probability density 
function (C.2.5) derived from an observed frequency distribution (C.2.18), 
while a Type B standard uncertainty is obtained from an assumed probability 
density function based on the degree of belief that an event will occur [often 
called subjective probability (C.2.1)].  Both approaches employ recognized 
interpretations of probability. 

 NOTE – A Type B evaluation of an uncertainty component is usually based on a pool of 
comparatively reliable information (see 4.3.1). 

3.3.6 The standard uncertainty of the result of a measurement, when that result is 
obtained from the values of a number of other quantities, is termed combined 
standard uncertainty and denoted by uc. It is the estimated standard deviation 
associated with the result and is equal to the positive square root of the 
combined variance obtained from all variance and covariance (C.3.4) 
components, however evaluated, using what is termed in this Guide the law of 
propagation of uncertainty (see clause 5). 

3.3.7 To meet the needs of some industrial and commercial applications, as well as 
requirements in the areas of health and safety, an expanded uncertainty U is 
obtained by multiplying the combined standard uncertainty uc by a coverage 
factor k. The intended purpose of U is to provide an interval about the result of 
a measurement that may be expected to encompass a large fraction of the 
distribution of values that could reasonably be attributed to the measurand.  The 
choice of the factor k, which is usually in the range 2 to 3, is based on the 
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coverage probability or level of confidence required of the interval (see clause 
6). 

 NOTE – The coverage factor k is always to be stated, so that the standard uncertainty of the 
measured quantity can be recovered for use in calculating the combined standard uncertainty 
of other measurement results that may depend on that quantity. 

3.4 Practical considerations 
3.4.1 If all of the quantities on which the result of a measurement depends are varied, 

its uncertainty can be evaluated by statistical means.  However, because this is 
rarely possible in practice due to limited time and resources, the uncertainty of a 
measurement result is usually evaluated using a mathematical model of the 
measurement and the law of propagation of uncertainty.  Thus implicit in this 
Guide is the assumption that a measurement can be modeled mathematically to 
the degree imposed by the required accuracy of the measurement. 

3.4.2 Because the mathematical model may be incomplete, all relevant quantities 
should be varied to the fullest practicable extent so that the evaluation of 
uncertainty can be based as much as possible on observed data.  Whenever 
feasible, the use of empirical models of the measurement founded on long-term 
quantitative data, and the use of check standards and control charts that can 
indicate if a measurement is under statistical control, should be part of the effort 
to obtain reliable evaluations of uncertainty. The mathematical model should 
always be revised when the observed data, including the result of independent 
determinations of the same measurand, demonstrate that the model is 
incomplete.  A well-designed experiment can greatly facilitate reliable 
evaluations of uncertainty and is an important part of the art of measurement. 

3.4.3 In order to decide if a measurement system is functioning properly, the 
experimentally observed variability of its output values, as measured by their 
observed standard deviation, is often compared with the predicted standard 
deviation obtained by combining the various uncertainty components that 
characterize the measurement.  In such cases, only those components (whether 
obtained from Type A or Type B evaluations) that could contribute to the 
experimentally observed variability of these output values should be 
considered. 

 NOTE – Such an analysis may be facilitated by gathering those components that contribute to 
the variability and those that do not into two separate and appropriately labeled groups. 

3.4.4 In some cases, the uncertainty of a correction for a systematic effect need not be 
included in the evaluation of the uncertainty of a measurement result.  Although 
the uncertainty has been evaluated, it may be ignored if its contribution to the 
combined standard uncertainty of the measurement result is insignificant.  If the 
value of the correction itself is insignificant relative to the combined standard 
uncertainty, it too may be ignored. 

3.4.5 It often occurs in practice, especially in the domain of legal metrology, that a 
device is tested through a comparison with a measurement standard and the 
uncertainties associated with the standard and the comparison procedure are 
negligible relative to the required accuracy of the test.  An example is the use of 
a set of well-calibrated standards of mass to test the accuracy of a commercial 
scale.  In such cases, because the components of uncertainty are small enough 
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to be ignored, the measurement may be viewed as determining the error of the 
device under test.  (See also F.2.4.2.) 

3.4.6 The estimate of the value of a measurand provided by the result of a 
measurement is sometimes expressed in terms of the adopted value of a 
measurement standard rather than in terms of the relevant unit of the 
International System of Units (SI).  In such cases the magnitude of the 
uncertainty ascribable to the measurement result may be significantly smaller 
than when that result is expressed in the relevant SI unit.  (In effect, the 
measurand has been redefined to be the ratio of the value of the quantity to be 
measured to the adopted value of the standard.) 

 EXAMPLE – A high-quality Zener voltage standard is calibrated by comparison with a 
Josephson effect voltage reference based on the conventional value of the Josephson constant 
recommended for international use by the CIPM.  The relative combined standard uncertainty 
uc (VS)/VS (see 5.1.6) of the calibrated potential difference VS of the Zener standard is 2 x 10-8

when VS is reported in terms of the conventional value, but uc (VS)/VS is 4 x 10-7 when VS is 
reported in terms of the SI unit of potential difference, the volt (V), because of the additional 
uncertainty associated with the SI value of the Josephson constant.  

3.4.7 Blunders in recording or analyzing data can introduce a significant unknown 
error in the result of a measurement.  Large blunders can usually be identified 
by a proper review of the data; small ones could be masked by, or even appear 
as, random variations.  Measures of uncertainty are not intended to account for 
such mistakes. 

3.4.8 Although this Guide provides a framework for assessing uncertainty, it cannot 
substitute for critical thinking, intellectual honesty, and professional skill.  The 
evaluation of uncertainty is neither a routine task nor a purely mathematical 
one; it depends on detailed knowledge of the nature of the measurand and of the 
measurement.  The quality and utility of the uncertainty quoted for the result of 
a measurement therefore ultimately depend on the understanding, critical 
analysis, and integrity of those who contribute to the assignment of its value. 

 

4- EVALUATING STANDARD UNCERTAINTY 
 Additional guidance on evaluating uncertainty components, mainly of a 

practical nature, may be found in annex F. 

4.1 Modelling the measurement 
4.1.1 In most cases a measurand Y is not measured directly, but is determined from N

other quantities X1, X2, . . . . XN through a functional relationship f:
Y = f(X1, X2, . . . . XN) ….(1) 

 NOTES 

1 For economy of notation, in this Guide the same symbol is used for the physical quantity 
(the measurand) and for the random variable (see 4.2.1) that represents the possible 
outcome of an observation of that quantity.  When it is stated that Xi has a particular 
probability distribution, the symbol is used in the latter sense; it is assumed that the 
physical quantity itself can be characterized by an essentially unique value (see 1.2 and 
3.1.3). 
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2 In a series of observations, the kth observed value of Xi is denoted by Xi,k; hence if R 
denotes the resistance of a resistor, the kth observed value of the resistance is denoted by 
Rk.

3 The estimate of Xi (strictly speaking, of its expectation) is denoted by xi.

EXAMPLE – If a potential difference V is applied to the terminals of a temperature-dependent 
resistor that has a resistance R0 at the defined temperature t0 and a linear temperature coefficient 
of resistance α, the power P (the measurand) dissipated by the resistor at the temperature t 
depends on V, R0, α, and t according to   

P = f(V, R0, α, t) = V2/R0[1 + α(t – t0)] 

NOTE – Other methods of measuring P would be modelled by different mathematical 
expressions. 

4.1.2 The input quantities X1, X2, . . . . XN upon which the output quantity Y depends 
may themselves be viewed as measurands and may themselves depend on other 
quantities, including corrections and correction factors for systematic effects, 
thereby leading to a complicated functional relationship f that may never be 
written down explicitly.  Further, f may be determined experimentally (see 
5.1.4) or exist only as an algorithm that must be evaluated numerically.  The 
function f as it appears in this Guide is to be interpreted in this broader context, 
in particular as that function which contains every quantity, including all 
corrections and correction factors, that can contribute a significant component 
of uncertainty to the measurement result. 

 Thus, if data indicate that f does not model the measurement to the degree 
imposed by the required accuracy of the measurement result, additional input 
quantities must be included in f to eliminate the inadequacy (see 3.4.2).  This 
may require introducing an input quantity to reflect incomplete knowledge of a 
phenomenon that affects the measurand.  In the example of 4.1.1, additional 
input quantities might be needed to account for a known nonuniform 
temperature distribution across the resistor, a possible nonlinear temperature 
coefficient of resistance, or a possible dependence of resistance on barometric 
pressure. 

 NOTE – Nonetheless, equation (1) may be as elementary as Y = X1 – X2. This expression 
models, for example, the comparison of two determinations of the same quantity X. 

4.1.3 The set of input quantities X1, X2, . . . . XN may be categorized as:  

- quantities whose values and uncertainties are directly determined in the 
current measurement.  These values and uncertainties may be obtained 
from, for example, a single observation, repeated observations, or 
judgement based on experience, and may involve the determination of 
corrections to instrument readings and corrections for influence quantities, 
such as ambient temperature, barometric pressure, and humidity; 

- quantities whose values and uncertainties are brought into the 
measurement from external sources, such as quantities associated with 
calibrated measurement standards, certified reference materials, and 
reference data obtained from handbooks. 
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4.1.4 An estimate of the measurand Y, denoted by y, is obtained from equation (1) 
using input estimates x1, x2, …. XN for the values of the N quantities X1, X2, …..,
XN. Thus the output estimate y, which is the result of the measurement, is given 
by 

 y = f(x1, x2, . . . . xN) …. (2) 
 NOTE – In some cases the estimate y may be obtained from 

y = Y =
1

1n k

n

−
∑ =

1
1n k

n

−
∑ f(X1, X2,k . . . .  XN,,k)

That is, y is taken as the arithmetic mean or average (see 4.2.1) of n independent 
determinations Yk of Y, each determination having the same uncertainty and each being based 
on a complete set of observed values of the N input quantities X i obtained at the same time.  

This way of averaging, rather than y = f( X 1 , X 2 , …. X N ), where X i = (( X i kk
n

, )=∑ 1 /n is 
the arithmetic mean of the individual observations Xi,k, may be preferable when f is a nonlinear 
function of the input quantities X1, X2, …., XN, but the two approaches are identical if f is a 
linear function of the Xi (see H.2 and H.4). 

4.1.5 The estimated standard deviation associated with the output estimate or 
measurement result y, termed combined standard uncertainty and denoted by uc
(y), is determined from the estimated standard deviation associated with each 
input estimate xi, termed standard uncertainty and denoted by u(xi) (see 3.3.5 
and 3.3.6). 

4.1.6 Each input estimate xi and its associated standard uncertainty u(xi) are obtained 
from a distribution of possible values of the input quantity Xi. This probability 
distribution may be frequency based, that is, based on a series of observations 
Xi,k of Xi, or it may be an a priori distribution.  Type A evaluations of standard 
uncertainty components are founded on frequency distributions while Type B 
evaluations are founded on a priori distributions.  It must be recognized that in 
both cases the distributions are models that are used to represent the state of our 
knowledge. 

4.2 Type A evaluation of standard uncertainty 
4.2.1 In most cases, the best available estimate of the expectation or expected value 

µq of a quantity q that varies randomly [a random variable (C.2.2)], and for 
which n independent observations qk have been obtained under the same 
conditions of measurement (see B.2.15), is the arithmetic mean or average q
(C.2.19) of the n observations: 

q = 1
1n k

n

−
∑ qk . . . . (3) 

 Thus, for an input quantity Xi estimated from n independent repeated 
observations Xi,k, the arithmetic mean X 1 obtained from equation (3) is used as 
the input estimate xi in equation (2) to determine the measurement result y; that 
is, xi = X 1 .
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4.2.2 The individual observations qk differ in value because of random variations in 
the influence quantities, or random effects (see 3.2.2).  The experimental 
variance of the observations, which estimates the variance σ2 of the probability 
distribution of q, is given by 

s2( q ) = 1
1 1n - k

n

−
∑ (qk = q )2 .… (4) 

 This estimate of variance and its positive square root s(qk), termed the 
experimental standard deviation (B.2.17), characterize the variability of the 
observed values qk, or more specifically, their dispersion about their mean q .

4.2.3 The best estimate of σ2( q ) = σ2/n, the variance of the mean, is given by 

s2( q ) =
s q

n
k

2 ( )
 …. (5) 

 The experimental variance of the mean s2( q ) and the experimental standard 
deviation of the mean s( q ) (B.2.17, note 2), equal to the positive square root 
of s2( q ), quantify how well q estimates the expectation µq of q, and either may 
be used as a measure of the uncertainty of q .

Thus, for an input quantity Xi determined from n independent repeated 
observations Xi,k, the standard uncertainty u(xi) of its estimate xi = X i , is u(xi) =
s( X i ), calculated according to equation (5).  For convenience, u2(xi) = s2( X i )
and u(xi) = s( X i ) are sometimes called a Type A variance and a Type A 
standard uncertainty, respectively. 

 NOTES 

1 The number of observations n should be large enough to ensure that q provides a reliable 

estimate of the expectation µq of the random variable q and that s2( q ) provides a reliable 

estimate of the variance σ2( q ) = σ2/n (see 4.3.2, note).  The difference between s2( q ) and 

σ2( q ) must be considered when one constructs confidence intervals (see 6.2.2).  In this 
case, if the probability distribution of q is a normal distribution (see 4.3.4), the difference 
is taken into account through the t-distribution (see G.3.2). 

2 Although the variance s2( q ) is the more fundamental quantity, the standard deviation 

s( q ) is more convenient in practice because it has the same dimension as q and a more 
easily comprehended value than that of the variance. 

4.2.4 For a well-characterized measurement under statistical control, a combined or 
pooled estimate of variance sp

2 (or a pooled experimental standard deviation sp)
that characterizes the measurement may be available.  In such cases, when the 
value of a measurand q is determined from n independent observations, the 
experimental variance of the arithmetic mean q of the observations is estimated 
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better by sp
2 /n than by s2( q )/n and the standard uncertainty is u = sp/ n . (See 

also the note to H.3.6.) 

4.2.5 Often an estimate xi of an input quantity Xi is obtained from a curve that has 
been fitted to experimental data by the method of least squares.  The estimated 
variances and resulting standard uncertainties of the fitted parameters 
characterizing the curve and of any predicted points can usually be calculated 
by well-known statistical procedures (see H.3 and reference [H]). 

4.2.6 The degrees of freedom (C.2.31) vi of u(xi) (see G.3), equal to n – 1 in the 
simple case where xi = Xi and u(xi) = s( X i ) are calculated from n independent 
observations as in 4.2.1 and 4.2.3, should always be given when Type A 
evaluations of uncertainty components are documented. 

4.2.7 If the random variations in the observations of an input quantity are correlated, 
for example, in time, the mean and experimental standard deviation of the mean 
as given in 4.2.1 and 4.2.3 may be inappropriate estimators (C.2.25) of the 
desired statistics (C.2.23).  In such cases, the observations should be analysed 
by statistical methods specially designed to treat a series of correlated, 
randomly-varying measurements. 

 NOTE – Such specialized methods are used to treat measurements of frequency standards.  
However, it is possible that as one goes from short-term measurements to long-term 
measurements of other metrological quantities, the assumption of uncorrelated random 
variations may no longer be valid and the specialized methods could be used to treat these 
measurements as well.  (See reference [9], for example, for a detailed discussion of the Allan 
variance.) 

4.2.8 The discussion of Type A evaluation of standard uncertainty in 4.2.1 to 4.2.7 is 
not meant to be exhaustive; there are many situations, some rather complex, 
that can be treated by statistical methods.  An important example is the use of 
calibration designs, often based on the method of least squares, to evaluate the 
uncertainties arising from both short- and long-term random variations in the 
results of comparisons of material artifacts of unknown values, such as gauge 
blocks and standards of mass, with reference standards of known values.  In 
such comparatively simple measurement situations, components of uncertainty 
can frequently be evaluated by the statistical analysis of data obtained from 
designs consisting of nested sequences of measurements of the measurand for a 
number of different values of the quantities upon which it depends – a so-called 
analysis of variance (see H.5). 

 NOTE – At lower levels of the calibration chain, where reference standards are often assumed 
to be exactly known because they have been calibrated by a national or primary standards 
laboratory, the uncertainty of a calibration result may be a single Type A standard uncertainty 
evaluated from the pooled experimental standard that characterizes the measurement. 

4.3 Type B evaluation of standard uncertainty 
4.3.1 For an estimate xi of an input quantity Xi that has not been obtained from 

repeated observations, the associated estimated variance u2(xi) or the standard 
uncertainty u(xi) is evaluated by scientific judgement based on all of the 
available information on the possible variability of Xi. The pool of information 
may include 
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- previous measurement data; 

- experience with or general knowledge of the behaviour and properties of 
relevant materials and instruments; 

- manufacturer’s specifications; 

- uncertainties assigned to reference data taken from handbooks. 

 For convenience, u2(xi) and u(xi) evaluated in this way are sometimes called a 
Type B variance and a Type B standard uncertainty, respectively. 

 NOTE – When xi is obtained from an a priori distribution, the associated variance is 
appropriately written as u2(xi), but for simplicity, u2(xi) and u(xi) are used throughout this 
Guide. 

4.3.2 The proper use of the pool of available information for a Type B evaluation of 
standard uncertainty calls for insight based on experience and general 
knowledge, and is a skill that can be learned with practice.  It should be 
recognized that a Type B evaluation of standard uncertainty can be as reliable 
as a Type A evaluation, especially in a measurement situation where a Type A 
evaluation is based on a comparatively small number of statistically 
independent observations. 

 NOTE – If the probability distribution of q in note 1 to 4.2.3 is normal, then σ[s( q )]σ( q ), the 

standard deviation of s( q ) relative to σ( q ), is approximately [2(n-1)]-1/2. Thus, taking 

σ[s( q )] as the uncertainty of s( q ), for n = 10 observations the relative uncertainty in s( q ) is 
24 percent, while for n = 50 observations it is 10 percent.  (Additional values are given in table 
E.1 in annex E.) 

4.3.3 If the estimate xi is taken from a manufacturer’s specification, calibration 
certificate, handbook, or other source and its quoted uncertainty is stated to be a 
particular multiple of a standard deviation, the standard uncertainty u(xi) is 
simply the quoted value divided by the multiplier, and the estimated variance 
u2(xi) is the square of that quotient. 

 EXAMPLE – A calibration certificate states that the mass of a stainless steel mass standard mS
of nominal value one kilogram is 1 000,000 325 g and that “the uncertainty of this level.”  The 
standard uncertainty of the mass standard is then simply u(mS) = (240 µg)/3 = 80 µg.  This 
corresponds to a relative standard uncertainty u(mS)/mS of 80 x 10-9 (see 5.1.6).  The estimated 
variance is u2(mS) = 80 µg)2 = 6,4 x 10-9 g2.

NOTE – In many cases little or no information is provided about the individual components 
from which the quoted uncertainty has been obtained.  This is generally unimportant for 
expressing uncertainty according to the practices of this Guide since all standard uncertainties 
are treated in the same way when the combined standard uncertainty of a measurement result is 
calculated (see clause 5). 

4.3.4 The quoted uncertainty of xi is not necessarily given as a multiple of a standard 
deviation as in 4.3.3.  Instead, one may find it stated that the quoted uncertainty 
defines an interval having a 90, 95, or 99 percent level of confidence (see 
6.2.2).  Unless otherwise indicated, one may assume that a normal distribution 
(C.2.14) was used to calculate the quoted uncertainty, and recover the standard 
uncertainty of xi by dividing the quoted uncertainty by the appropriate factor for 
the normal distribution.  The factors corresponding to the above three levels of 
confidence are 1,64; 1,96; and 2,58 (see also table G.1 in annex G). 
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 NOTE – There would be no need for such an assumption if the uncertainty had been given in 
accordance with the recommendations of this Guide regarding the reporting of uncertainty, 
which stress that the coverage factor used is always to be given (see 7.2.3). 

 EXAMPLE – A calibration certificate states that the resistance of a standard resistor RS of 
nominal value ten ohms is 10,000 742 Ω ± 129 µΩ at 23oC and that “the quoted uncertainty of 
129 µΩ defines an interval having a level of confidence of 99 percent.”  The standard 
uncertainty of the resistor may be taken as u(RS) = (129 µΩ)2,58 = 50 µΩ, which corresponds 
to a relative  uncertainty u(RS)/RS of 5,0 x 10-6 (see 5.1.6).  The estimated variance is u2(RS) =
50 µΩ)2 = 2,5 x 10-9 Ω2.

4.3.5 Consider the case where, based on the available information, one can state that 
“there is a fifty-fifty chance that the value of the input quantity Xi lies in the 
interval a_ to a+” (in other words, the probability that Xi lies within this interval 
is 0,5 or 50 percent).  If it can be assumed that the distribution of possible 
values of Xi is approximately normal, then the best estimate xi of Xi can be taken 
to be the midpoint of the interval.  Further, if the half-width of the interval is 
denoted by a = (a+ - a_)/2, one can take u(xi) = 1,48a, because for a normal 
distribution with expectation µ and standard deviation σ the interval µ ± σ /
1,48 encompasses approximately 50 percent of the distribution. 

 EXAMPLE – A machinist determining the dimensions of a part estimates that its length lies, 
with probability 0,5, in the interval 10,07 mm to 10,15 mm, and reports that 1 = (10,11 ± 0,04) 
mm, meaning that ± 0,04 mm defines an interval having a level of confidence of 50 percent.  
Then a = 0,04 mm, and if one assumes a normal distribution for the possible values of l, the 
standard uncertainty of the length is u(l) = 1,48 x 0,04 mm = 0,06 mm and the estimated 
variance is u2(l) = (1,48 x 0,04 mm)2 = 3,5 x 10-3 mm2.

4.3.6 Consider a case similar to that of 4.3.5 but where, based on the available 
information, one can state that “there is about a two out of three chance that the 
value of Xi lies in the interval a- to a+” (in other words, the probability that Xi
lies within this interval is about 0,67).  One can then reasonably take u(xi) = a, 
because for a normal distribution with expectation µ and standard deviation σ
the interval µ ± σ encompasses about 68,3 percent of the distribution. 

 NOTE – It would give the value of u(xi) considerably more significance than is obviously 
warranted if one were to use the actual normal device 0,96742 corresponding to probability p 
= 2/3, that is, if one were to write u(xi) = a/0,96742 = 1,033a. 

4.3.7 In other cases it may be possible to estimate only bounds (upper and lower 
limits) for Xi, in particular, to state that “the probability that the value of Xi lies 
within the interval a- to a+ for all practical purposes is equal to one and the 
probability that Xi lies outside this interval is essentially zero.”  If there is no 
specific knowledge about the possible values of Xi within the interval, one can 
only assume that it is equally probable for Xi to lie anywhere within it (a 
uniform or rectangular distribution of possible values – see 4.4.5 and figure 2a).  
Then xi , the expectation or expected value of Xi, is the midpoint of the interval, 
xi = (a- + a+)/2, with associated variance 

 u2(xi) = (a- - a+)/212      …. (6) 

 If the difference between the bounds, a+ - a-, is denoted by 2a, then equation (6) 
becomes 

 u2(xi) = a2/3       …. (7) 
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 NOTE – When a component of uncertainty determined in this manner contributes significantly 
to the uncertainty of a measurement result, it is prudent to obtain additional data for its further 
evaluation. 

 EXAMPLES 

1 A handbook gives the value of the coefficient of linear thermal expansion of pure copper 
at 20oC, α20(Cu), as 16,52 x 10-6 oC-1 and simply states that “the error in this value should 
not exceed 0,40 x 10-6 oC-1.”  Based on this limited information, it is not unreasonable to 
assume that the value of α20(Cu) lies with equal probability in the interval 16,12 x 10-6 
oC-1 to 16,92 x 10-6 oC-1, and that it is very unlikely that α20(Cu) lies outside this interval.  
The variance of this symmetric rectangular distribution of possible values of α20(Cu) of 
half width a = 0,40 x 10-6 oC-1 is then, from equation (7), u2(α20) = (0,40 x 10-6 oC-1)2/3 = 

53.3 x 10-15 oC-2, and the stated uncertainty is u(α20) = (0,40 x 10-6 oC-1)/ 3 = 0,23 x 
10-6 oC-1.

2 A manufacturer’s specifications for a digital voltmeter state that “between one and two 
years after the instrument is calibrated, its accuracy on the 1 V range is 14 x 10-6 times 
the range.”  Consider that the instrument is used 20 months after calibration to measure 
on its 1 V range a potential difference V, and the arithmetic mean of a number of 
independent repeated observations of V is found to be V = 0,928 571 V with a Type A 
standard uncertainty u(V ) = 12 µV.  One can obtain the standard uncertainty associated 
with the manufacturer’s specifications from a Type B evaluation by assuming that the 
stated accuracy provides symmetric bounds to an additive correction to V , ∆V , of 
expectation equal to zero and with equal probability of lying anywhere within the 
bounds.  The half-width a of the symmetric rectangular distribution of possible values of 
∆V is then a = (14 x 10-6) x (0,928 571 V) + (2 x 10-6) x (1 V) = 15 µV, and from 
equation (7), u2(∆V ) = 75 µV2 and u(∆V ) = 8.7 µV.  The estimate of the value of the 
measurand V, for simplicity denoted by the same symbol V, is given by V = V + ∆V =
0,928 571 V.  One can obtain the combined standard uncertainty of this estimate by 
combining the 12 µV Type A standard uncertainty of V with the 8.7 µV Type B 
standard uncertainty of ∆V . The general method for combining standard uncertainty 
components is given in clause 5, with this particular example treated in 5.1.5. 

4.3.8 In 4.3.7 the upper and lower bounds a+ and a- for the input quantity Xi may not 
be symmetric with respect to its best estimate xi; more specifically, if the lower 
bound is written as a- = xi – b- and the upper bound as a+ = xi + b+, then b- ≠ b+.
Since in this case xi (assumed to be the expectation of Xi) is not at the centre of 
the interval a- to a+, the probability distribution of Xi may not be enough 
information available to choose an appropriate distribution; different models 
will lead to different expressions for the variance.  In the absence of such 
information the simplest approximation is 

 u2(xi) =
( )b b+ −+ 2

12
= ( )a a+ −+ 2

12
…. (8) 

 which is the variance of a rectangular distribution with full width b+ + b-.
(Asymmetric distributions are also discussed in F.2.4.4 and G.5.3.) 

 EXAMPLE – If an example 1 of 4.3.7 the value of the coefficient is given in the handbook as 
α20(Cu) =16,52 x 10-6 oC-1 and it is stated that “the smallest possible value is 16,40 x 10-6 oC-1 
and the largest possible value is 16,92 x 10-6 oC-1,” then b- = 0,12 x 10-6 oC-1, b+ = 0,40 x 10-6 oC-

1, and, from equation (8), u(α20) =0,15 x 10-6 oC-1.
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 NOTES 

1 In many practical measurement situations where the bounds are asymmetric, it may be 
appropriate to apply a correction to the estimate xi of magnitude (b+ - b-/2 so that the new 
estimate xi' of Xi is at the midpoint of the bounds: xi' = (a- + a+)2.  This reduces the 
situation to the case of 4.3.7, with new values b+' = b_' = (b+ + b-)/2 = (a+ - a-)/2 = a.   

2 Based on the principle of maximum entropy, the probability density function in the 
asymmetric case may be shown to be p(Xi) = A exp[-λ(xi - xi)], with A = [b-exp(λb-) +
b+exp(-λb+]-1 and λ = {exp[λ(b- + b+)] - 1}/{b-exp[λ(b- + b+)] + b+}.  This leads to the 
variance u2(xi) = b+b- - (b+ - b-)/λ; for b+ > b-, λ > b-, λ > 0 and for b+ < b-, λ < 0. 

4.3.9 In 4.3.7, because there was no specific knowledge about the possible values of 
Xi within its estimated bounds a- to a+, one could only assume that it was 
equally probable for Xi to take any value within those bounds, with zero 
probability of being outside them.  Such step function discontinuities in a 
probability distribution are often unphysical.  In many cases it is more realistic 
to expect that values near the bounds are less likely than those near the 
midpoint.  It is then reasonable to replace the symmetric rectangular distribution 
with a symmetric trapezoidal distribution having equal sloping sides (an 
isosceles trapezoid), a base of width a+ - a- = 2a, and a top of width 2aβ where 
0 ≤ β ≤ 1. As β � 1 this trapezoidal distribution approaches the rectangular 
distribution of 4.3.7, while for β = 0 it is a triangular distribution (see 4.4.6 and 
figure 2b).  Assuming such a trapezoidal distribution for Xi, one finds that the 
expectation of Xi is xi = (a- + a+)/2 and its associated variance is 

 u2(xi) = a2(1 + β2)/6      …. (9a) 

 which becomes for the triangular distribution, β = 0,

u2(xi) = a2/6       …. (9b) 
 NOTES 

1 For a normal distribution with expectation µ and standard deviation σ, the interval µ ± σ
encompasses approximately 99,73 percent of the distribution.  Thus, if the upper and lower 
bounds a+ and a- define 99,73 percent limits rather than 100 percent limits, and Xi can be 
assumed to be approximately normally distributed rather than there being no specific 
knowledge about Xi between the bounds as in 4.3.7, then u2(xi) = a2/9.  By comparison, the 
variance of a symmetric rectangular distribution of half-width a is a2/3 [equation (7)] and 
that of a symmetric triangular distribution of half width a is a2/6 [equation (9b)].  The 
magnitudes of the variances of the three distributions are surprisingly similar in view of the 
large differences in the amount of information required to justify them. 

2 The trapezoidal distribution is equivalent to the convolution of two rectangular 
distributions [10], one with a half-width a1 equal to the mean half-width of the trapezoid, 
a1 = a(1 + β )/2, the other with a half-width a2 equal to the mean width of one of the 
triangular portions of the trapezoid, a2 = a(1 + β )/3.  The convolved distribution is u2 = 
a 1

2 /3 + a 2
2 /3. can be interpreted as a rectangular distribution whose width 2a1 has itself 

an uncertainty represented by a rectangular distribution of width 2a2 and models the fact 
that the bounds on an input quantity are not exactly known.  But even if a2 is a large as 30 

percent of a1, u exceeds a1/ 3 by less than 5 percent. 
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4.3.10 It is important not to “double-count” uncertainty components.  If a components 
of uncertainty arising from a particular effect is obtained from a Type B 
evaluation, it should be included as an independent component of uncertainty in 
the calculation of the combined standard uncertainty of the measurement result 
only to the extent that the effect does not contribute to the observed variability 
of the observations.  This is because the uncertainty due to that portion of the 
effect that contributes to the observed variability is already included in the 
component of uncertainty obtained from the statistical analysis of the 
observations. 

4.3.11 The discussion of Type B evaluation of standard uncertainty in 4.3.3 to 4.3.9 is 
meant only to be indicative.  Further, evaluations of uncertainty should be based 
on quantitative data to the maximum extent possible, as emphasized in 3.4.1 
and 3.4.2. 

4.4 Graphical illustration of evaluating standard uncertainty 
4.4.1 Figure 1 represents the estimation of the value of an input quantity Xi and the 

evaluation of the uncertainty of the estimate from the unknown distribution of 
possible measured values of Xi, or probability distribution of Xi, that is sampled 
by means of repeated observations. 

4.4.2 In figure 1a it is assumed that the input quantity Xi is a temperature t and that its 
unknown distribution is a normal distribution with expectation µt = 100oC and 
standard deviation σ = 1,5oC.  Its probability density function (see C.2.14) is 
then 

p(t) = 1
2πσ

exp   - (t - µσ2

NOTE – The definition of a probability density function p(z) requires that the relation ∫p(z)dz = 
1 is satisfied. 

4.4.3 Figure 1b shows a histogram of n = 20 repeated observations tk of the 
temperature t that are assumed to have been taken randomly from the 
distribution of figure 1a.  To obtain the histogram, the 20 observations or 
samples, whose values are given in table 1, are grouped into intervals 1oC wide.  
(Preparation of a histogram is, of course, not required for the statistical analysis 
of the data.) 

 The arithmetic mean or average t of the n = 20 observations calculated 
according to equation (3) is t = 100,145oC ≈ 100,14oC and is assumed to be the 
best estimate of the expectation µt of t based on the available data.  The 
experimental standard deviation s(tk) calculated from equation (4) is s(tk) =
1,489oC = 1,49oC, and the experimental standard deviation of the mean s( t )
calculated from equation (5), which is the standard uncertainty u( t ) of the 
mean t , is u( t ) = s( t ) = s(tk)/ 20  = 0,333oC ≈ 0,33oC.  (For further 
calculations, it is likely that all of the digits would be retained.) 

 NOTE – Although the data in table 1 are not implausible considering the widespread use of 
high-resolution digital electronic thermometers, they are for illustrative purposes and should 
not necessarily be interpreted as describing a real measurement. 
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Figure 1 – Graphical illustration of evaluating the standard uncertainty of an input 
quantity from repeated observations 
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4.4.4 Figure 2 represents the estimation of the value of an input quantity Xi and the 
evaluation of the uncertainty of that estimate from an a priori distribution of 
possible values of Xi, or probability distribution of Xi, based on all of the 
available information.  For both cases shown, the input quantity is again 
assumed to be a temperature t.

4.4.5 For the case illustrated in figure 2a, it is assumed that little information is 
available about the input quantity t and that all one can do is suppose that t is 
described by a symmetric, rectangular a priori probability distribution of lower 
bound a- = 96oC, upper bound a+ = 104oC, and thus half-width a = (a+ - a-)/2 = 
4oC (see 4.3.7).  The probability density function of t is then 

 p(t) = 1/2a, a- ≤ t ≤ a+

p(t) = 0, otherwise 

 As indicated in 4.3.7, the best estimate of t is its expectation µt = (a+ + a-)/2 = 
100oC, which follows from C.3.1.  The standard uncertainty of this estimate is 
u(µt) = a/ 3 ≈ 2,3oC, which follows from C.3.2 [see equation (7)]. 

4.4.6 For the case illustrated in figure 2b, it is assumed that the available information 
concerning t is less limited and that t can be described by a symmetric, 
triangular a priori probability distribution of the same lower bound a- = 96oC, 
the same upper bound a+ = 104oC, and thus the same half-width a = (a+ - a-)/2 = 
4oC as in 4.4.5 (see 4.3.9).  The probability density function of t is then 

 p(t) = (t – a-)/a2, a- ≤ t ≤ (a+ + a-)/2 

 p(t) = (t+ – t)/a2, (a+ + a-)/2  ≤ t ≤ a+

p(t) = 0, otherwise 

 As indicated in 4.3.9, the expectation of t is µt = (a+ + a-)/2 = 100oC, which 
follows from C.3.1.  The standard uncertainty of this estimate is u(µt) =
a/ 6 ≈ 1,6oC, which follows from C.3.2 [see equation (9b)]. 

 The above value, u(µt) = 1,6oC, may be compared with u(µt) = 2,3oC obtained 
in 4.4.5 from a rectangular distribution of the same 8oC width; with σ = 1,5oC
of the normal distribution of figure 1a whose –2,58σ to +2.58σ width, which 
encompasses 99 percent of the distribution, is nearly 8oC; and with u( t ) =
0,33oC obtained in 4.4.3 from 20 observations assumed to have been taken 
randomly from the same normal distribution. 
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Table 1 – Twenty repeated observations of the temperature t grouped in 1oC intervals 

Interval t1 ≤ t < t2 Temperature 

t1/oC t1/oC t/oC

94,5 95,5 

95,5 96,5 

96,5 97,5 96,90 

97,5 98,5 98,18; 98,25 

98,5 99,5 98,61; 99,03; 99,49 

99,5 100,5 99,56; 99,74; 99,89; 100,07; 100,33; 100,42 

100,5 101,5 100,68; 100,95; 101,11; 101,20 

101,5 102,5 101,57; 101,84; 102,36 

102,5 103,5 102, 72 

103,5 104,5 

104,5 1055 
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Figure 2 – Graphical illustration of evaluating the standard uncertainty of an input 
quantity from an a priori distribution 
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5- DETERMINING COMBINED STANDARD UNCERTAINTY 
 This subclause treats the case where all input quantities are independent 

(C.3.7).  The case where two or more input quantities are related, that is, are 
interdependent or correlated (C.2.8), is discussed in 5.2. 

5.1.1 The standard uncertainty of y, where y is the estimate of the measurand Y and 
thus the result of the measurement, is obtained by appropriately combining the 
standard uncertainties of the input estimates x1, x2, . . . , xN (see 4.1).  This 
combined standard uncertainty of the estimate y is denoted by uc(y). 

 NOTE – For reasons similar to those given in the note to 4.3.1, the symbols uc(y) and  are used 
in all cases. 

5.1.2 The combined standard uncertainty uc(y) is the positive square root of the 
combined variance ___, which is given by 

 

where f is the function given in equation (1).  Each u(xi) is a standard 
uncertainty evaluated as described in 4.2 (Type A evaluation) or as in 4.3 (Type 
B evaluation).  The combined standard uncertainty uc(y) is an estimated 
standard deviation and characterizes the dispersion of the values that could 
reasonably be attributed to the measurand Y (see 2.2.3). 

 Equation (10) and its couterpart for correlated input quantities, equation (13), 
both of which are based on a first-order Taylor series approximation of Y = f(X1,
X2, . . . . XN), express what is termed in this Guide the law of propagation of 
uncertainty (see E.3.1 and E.3.2). 

 NOTE – When the nonlinearity of f is significant, higher-order terms in the Taylor series 
expansion must be included in the expression for u yc

2( ) , equation (10).  When the distribution 
of each Xi is symmetric about its mean, the most important terms of next highest order to be 
added to the terms of equation (10) are 
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See H.1 for an example of a situation where the contribution of higher-order terms to u yc
2( )  

needs to be considered. 

5.1.3 The partial derivatives ∂f/∂xi are equal to ∂f/∂Xi evaluated at Xi = xi (see note 1 
below).  These derivatives, often called sensitivity coefficients, describe how 
the output estimate y varies with changes in the values of the input estimates x1,
x2, . . . . xN. In particular, the change in y produced by a small change ∆xi in 
input estimate xi is given by (∆y)i = (∂f/∂xi)(∆xi).  If this change is generated by 
the standard uncertainty of the estimate xi, the corresponding variation in y is 
(∂f/∂xi)(∆xi).  The combined variance u yc

2 ( ) can therefore be viewed as a sum 
of terms, each of which represents the estimated variance associated with the 
output estimate y generated by the estimated variance associated with each 
input estimate xi. This suggests writing equation (10) as 
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 u yc
2 ( )  =  

i

N

=
∑

1
[ciu(xi)]2 ≡

i

N

=
∑

1
u yi

2 ( )  . . . (11a) 

 where 

 ci ≡ ∂f/∂xi , ui(y) ≡ | ci | u(xi) . . . (11b) 
 NOTES 

1 Strictly speaking, the partial derivatives are ∂f/∂xi = ∂f/∂Xi evaluated at the expectations of 
the Xi. However, in practice, the partial derivatives are estimated by 

 ∂
∂

f
xi

= ∂
∂

f
X

x x xN
i

1 2, , . . . .,

 

2 The combined standard uncertainty uc(y) may be calculated numerically by replacing 
ciu(xi) in equation (11a) with 

 Xi = 1
2

| f(x1, . . . ., Xi + u(xi), .  .  .  . xN)

f(x1, . . . ., Xi + u(xi), .  .  .  . xN)] 

 That is, ui(y) is evaluated numerically by calculating the change in y due to a change in xi of + 
u(xj) and of –u(xi).  The value of ui(y) may then be taken as | Zi | and the value of the 
corresponding sensitivity coefficient ci as Zi/u(xi). 

 EXAMPLE – For the example of 4.1.1, using the same symbol for both the quantity and its 
estimate for simplicity of notation, 

 c1 ≡ ∂P/∂V = 2V/R0[1 + α(t – t0)] = 2P/V

c2 ≡ ∂P/∂R0 = V2/R0
2[1 + α(t – t0)] = P/R0

c3 ≡ ∂P/∂α = V2(t – t0)/R0[1 + α(t – t0)]2

= P(t – t0)/[1 + α(t – t0)] 

 c4 ≡ ∂P/∂t = V2α/R0[1 + α(t – t0)]2

= Pα/[1 + α(t – t0)] 

 and 

 u2(P) =
∂
∂

P
V







2

u2(α) +
∂
∂

P
R0

2








 u2(t)

+
∂
∂α

P





2

u2(α) +
∂
∂
P
t







2

u2(t)

= [c1u(V)]2 + [c2u(R0)]2 + [c3u(α)]2 + [c4u(t)]2

= u P1
2( )  +  u P2

2( )  + u P3
2( )  + u P4

2( )  
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5.1.4 Instead of being calculated from the function f, sensitivity coefficients ∂f/∂xi are 
sometimes determined experimentally: one measures the change in Y produced 
by a change in a particular Xi while holding the remaining input quantities 
constant.  In this case, the knowledge of the function f (or a portion of it when 
only several sensitivity coefficients are so determined) is accordingly reduced 
to an empirical first-order Taylor series expansion based on the measured 
sensitivity coefficients. 

5.1.5 If equation (1) for the measurand Y is expanded about nominal values Xi,0 of the 
input quantities Xi, then, to first order (which is usually an adequate 
approximation), Y = Y0 + c1δ1 + c2δ2 + . . . + cNδN, where Y0 = f(X1,0, X2,0, . . . ,
XN,0), ci = (∂f/∂Xi) evaluated at Xi = Xi,0, and δi = Xi – Xi,0. Thus, for the 
purposes of an analysis of uncertainty, a measurand is usually approximated by 
a linear function of its variables by transforming its inplut quantities from Xi to 
δi (see E.3.1). 

 EXAMPLE – From example 2 of 4.3.7, the estimate of the value of the measurand V is V = V +
∆V , where V = 0,928 571 V, u(V ), = 12 µV, the additive correction ∆V . Since ∂V/∂(∆V ) =
1, the combined variance associated with V is given by 

 = u2(V ) + u2(∆V ) = (12 µV)2 + (8,7 µV)2

= 219  x  10-12 V2

and the combined standard uncertainty is uc(V) = 15 µV, which corresponds to a relative 
combined standard uncertainty uc(V)/V of 16 x 10-6 (see 5.1.6).  This is an example of the case 
where the measurand is already a linear function of the quantities on which it depends, with 
coefficients ci = + 1.  It follows from equation (10) that if Y = c1X1 + c2X2 + . . . + cNXN and if 

the constants ci = + 1 or –1, then u yc
2( )  = 

i

N

=
∑

1
u2(xi). 

5.1.6 If Y is of the form Y = ____ . . . X__ and the exponents pi are known positive or 
negative numbers having negligible uncertainties, the combined variance, 
equation (10), can be expressed as 

 [uc(y)/y]2 =
i

N

=
∑

1
[ρi u(xi)/xi]2 . . . (12) 

 This is of the same form as equation (11a) but with the combined variance 
u yc

2 ( ) expressed as a relative combined variance [uc(y)/y]2 and the estimated 
variance u2(xi) associated with each input estimate expressed as an estimated 
relative variance [u(xi)/xi]2. [The relative combined standard uncertainty is 
uc(y)/| y | and the relative standard uncertainty of each input estimate is u(xi)/| y |
≠ 0 and | xi | ≠ 0.]
NOTES 

1 When Y has this form, its transformation to a linear function of variables (see 5.1.5) is 
readily achieved by setting Xi = Xi,0(1 + δi), for then the following approximate relation 

results: (Y – Y0)/Y0 =
i

N

=
∑

1
. On the other hand, the logarithmic transformation Z = 1n Y 

and Wi = 1n Xi leads to an exact linearization in terms of the new variables: Z = 1nc + 

i

N

=
∑

1
ρi Wi.
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2 If each ρi is either +1 or –1, equation (12) becomes [uc(y)/y]2 =
i

N

=
∑

1
[u(xi)/xi]2, which 

shows that for this special case the relative combined variance associated with the estimate 
y is simply equal to the sum of the estimated relative variances associated with the input 
estimates xi.

5.2 Correlated input quantities 
5.2.1 Equation (10) and those derived from it such as equations (11) and (12) are 

valid only if the input quantities Xi are independent or uncorrelated (the random 
variables, not the physical quantities that are assumed to be invariants – see 
4.1.1, note 1).  If some of the Xi are significantly correlated, the correlations 
must be taken into account. 

5.2.2 When the input quantities are correlated, the appropriate expression for the 
combined variance u yc

2 ( ) associated with the result of a measurement is 

 u yc
2 ( )  =

i

N

=
∑

1 j

N

=
∑

1

∂
∂

f
xi

∂
∂

f
x j

u(xi, xj)

=
i

N

=
∑

1

∂
∂

f
xi











2

u2(xi) . . . (13) 

 + 2
1

1

i

N

=

−
∑

j i

N

= +
∑

1

∂
∂

f
xi

∂
∂

f
x j

u(xi, xj)

where xi and xj are the estimates of Xi and Xj and u(xi, xj) = u(xj, xi) is the 
estimated covariance associated with xi and xj. The degree of correlation 
between xi and xj is characterized by the estimated correlation coefficient 
(C.3.6). 

 r(xi, xj) =
u x x

u x u x
( , )

( ) ( )
i j

i j

 . . . (14) 

 where r(xi, xj) = (xj, xi), and –1 ≤ r(xi, xj) ≤ + 1.  If the estimates xi and xj are 
independent, r(xi, xj) = 0, and a change in one does not imply an expected 
change in the other.  (See C.2.8, C.3.6, and C.3.7 for further discussion.) 

 In terms of correlation coefficients, which are more readily interpreted than 
covariances, the covariance term of equation (13) may be written as 

 2
1

1

i

N

=

−
∑

j i

N

= +
∑

1

∂
∂

f
xi

∂
∂

f
x j

u(xi, xj) r(xi, xj) . . . (15) 
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 Equation (13) then becomes, with the aid of equation (11b), 

 u yc
2 ( )  =

i

N

=
∑

1
ci

2 u2(xi)

+ 2
1

1

i

N

=

−
∑

j i

N

= +
∑

1
ci cj u(xi) u(xj) r(xi, xj)

NOTES 

1 For the very special case where all of the input estimates are correlated with correlation 
coefficients r(xi, xj) = + 1, equation (16) reduces to 

 u yc
2( )  =  c u x

i

N
i i( )

=
∑











1

2

= ∂
∂

f
x

u x
i

N

i
i( )

=
∑











1

2

The combined standard uncertainty uc(y) is thus simply a linear sum of terms representing 
the variation of the output estimate y generated by the standard uncertainty of each input 
estimate xi (see 5.1.3).  [This linear sum should not be confused with the general law of 
error propagation although it has a similar form; standard uncertainties are not errors 
(see E.3.2).] 

 EXAMPLE – Ten resistors, each of nominal resistance Ri = 1000 Ω, are calibrated with a 
negligible uncertainty of comparison in terms of the same 1000 Ω standard resistor Rs

characterized by a standard uncertainty u(Rs) = 100 mΩ as given in its calibration 
certificate.  The resistors are connected in series with wires having negligible resistance in 
order to obtain a reference resistance Rref of nominal value 10 kΩ. Thus Rref = f(Ri) =

Ri i=∑ 1
10 . Since r(xi, xj) = r(Ri, Rj) = +1 for each resistor pair (see F.1.2.3, example 2), the 

equation of this note applies.  Since for each resistor ∂f/∂xi = ∂Rref/∂Ri = 1, and u(xi) = u(Ri)
= u(Rs) (see F.1.2.3, example 2), that equation yields for the combined standard uncertainty 
of Rref, uc(Rref) = u Ri ( )s=∑ 1

10  = 10 x (100 mΩ) = 1 Ω. The result uc(Rref) = [ ( )] /u Rsi
2

1
10 1 2
=∑

= = 0,32 Ω obtained from equation (10) is incorrect because it does not take into account 
that all of the calibrated values of the ten resistors are correlated. 

2 The estimated variances u2(xi) and estimated covariances u(xi, xj) may be considered as the 
elements of a covariance matrix with elements uij. The diagonal elements uii of the matrix 
are the variances u2(xi), while the off-diagonal elements uij (i ≠ j) are the covariances u(xi,
xj) = u(xj, xi).  If two input estimates are uncorrelated, their associated covariance and the 
corresponding elements uij and uji of the covariance matrix are 0.  If the input estimates 
are all uncorrelated, all of the off-diagonal elements are zero and the covariance matrix is 
diagonal.  (See also C.3.5.) 

3 For the purposes of numerical evaluation, equation (16) may be written as 

 u yc
2( )  = 

i

N

=

−
∑

1

1

j i

N

= +
∑

1
Zi Zj r(xj, xj)

where Zi is given in 5.1.3, note 2. 

4 If the Xi of the special form considered in 5.1.6 are correlated, then the terms 

 2
1

1

i

N

=

−
∑

j i

N

= +
∑

1
[piu(xi)/xi] [pj u(xj)/xj] r(xj, xj)

must be added to the right-hand side of equation (12). 
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5.2.3 Consider two arithmetic means q and r that estimate the expectation µq and µr

of two randomly varying quantities q and r, and let q and r be calculated from 
n independent pairs of simultaneous observations of q and r made under the 
same conditions of measurement (see B.2.15).  Then the covariance (see C.3.4) 
of q and r is estimated by 

 s( q , r ) = 1
1n n( )− k

n

=
∑

1
(qk - q ) (rk - r ) . . . (17) 

 where qk and rk are the individual observations of the quantities q and r, and q
and r are calculated from the observations according to equation (3).  If in fact 
the observations are uncorrelated, the calculated covariance is expected to be 
near 0. 

 Thus the estimated covariance of two correlated input quantities Xi and Xj that 
are estimated by the means X i and X j determined from independent pairs of 
repeated simultaneous observations is given by u(xi, xj) = s( X i , X j ), with 
s( X i , X j ) calculated according to equation (17).  This application of equation 
(17) is a Type A evaluation of covariance.  The estimated correlation 
coefficient of X i and X j is obtained from equation (14): r(xi, xj) = r( X i , X j )
= s( X i , X j )/s( X i )s( X j ). 

 NOTE – Examples where it is necessary to use convariances as calculated from equation (17) 
are given in H.2 and H.4. 

5.2.4 There may be significant correlation between two input quantities if the same 
measuring instrument, physical measurement standard, or reference datum 
having a significant standard uncertainty is used in their determination.  For 
example, if a certain thermometer is used to determine a temperature correction 
required in the estimation of the value of input quantity Xi, and the same 
thermometer is used to determine a similar temperature correction required in 
the estimation of input quantity Xi, the two input quantities could be 
significantly correlated.  However, if Xi and Xj in this example are redefined to 
be the uncorrected quantities and the quantities that define the calibration curve 
for the thermometer are included as additional input quantities with independent 
standard uncertainties, the correlation between Xi and Xj is removed.  (See 
F.1.2.3 and F.1.2.4 for further discussion.) 

5.2.5 Correlations between input quantities cannot be ignored if present and 
significant.  The associated covariances should be evaluated experimentally if 
feasible by varying the correlated input quantities (see C.3.6, note 3), or by 
using the pool of available information on the correlated variability of the 
quantities in question (Type B evaluation of covariance).  Insight based on 
experience and general knowledge (see 4.3.1 and 4.3.2) is especially required 
when estimating the degree of correlation between input quantities arising from 
the effects of common influences, such as ambient temperature, barometric 
pressure, and humidity.  Fortunately, in many cases, the effects of such 
influences have negligible interdependence and the affected input quantities can 
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be assumed to be uncorrelated.  However, if they cannot be assumed to be 
uncorrelated, the correlations themselves can be avoided if the common 
influences are introduced as additional independent input quantities as indicated 
in 5.2.4. 

 

6- DETERMINING EXPANDED UNCERTAINTY 
6.1.1 Recommendation INC-1 (1980) of the Working Group on the Statement of 

Uncertainties on which this Guide is based (see the Introduction), and 
Recommendations 1 (CI-1981) and (CI-1986) of the CIPM approving and 
reaffirming INC-1 (1980) (see A.2 and A.3), advocate the use of the combined 
standard uncertainty uc(y) as the parameter for expressing quantitatively the 
uncertainty of the result of a measurement.  Indeed, in the second of its 
recommendations, the CIPM has requested that what is now termed combined 
standard uncertainty uc(y) be used “by all participants in giving the results of all 
international comparisons or other work done under the auspices of the CIPM 
and Comites Consultatifs.” 

6.1.2 Although uc(y) can be universally used to express the uncertainty of a 
measurement result, in some commercial, industrial, and regulatory 
applications, and when health and safety are concerned, it is often necessary to 
give a measure of uncertainty that defines an interval about the measurement 
result that may be expected to encompass a large fraction of the distribution of 
values that could reasonably be attributed to the measurand.  The existence of 
this requirement was recognized by the Working Group and led to paragraph 5 
of Recommendation INC-1 (1980).  It is also reflected in Recommendation 1 
(CI-1986) of the CIPM. 

6.2 Expanded uncertainty 
6.2.1 The additional measure of uncertainty that meets the requirement of providing 

an interval of the kind indicated in 6.1.2 is termed expanded uncertainty and is 
denoted by U. The expanded uncertainty U is obtained by multiplying the 
combined standard uncertainty uc(y) by a coverage factor k:

U = kuc(y) …(18) 

 The result of a measurement is then conveniently expressed as Y = y ± U, which 
is interpreted to mean that the best estimate of the value attributable to the 
measurand Y is y, and that y – U to y + U is an interval that may be expected to 
encompass a large fraction of the distribution of values that could reasonably be 
attributed to Y. Such an interval is also expressed as y – U ≤ Y ≤ y + U.

6.2.2 The terms confidence interval (C.2.27, C.2.28) and confidence level (C.2.29) 
have specific definitions in statistics and are only applicable to the interval 
defined by U when certain conditions are met, including that all components of 
uncertainty that contribute to uc(y) be obtained from Type A evaluations.  Thus, 
in this Guide, the word “confidence” is not used to modify the word “interval” 
when referring to the interval defined by U; and the term “confidence level” is 
not used in connection with that interval but rather the term “level of 
confidence”.  More specifically, U is interpreted as defining an interval about 
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the measurement result that encompasses a large fraction p of the probability 
distribution characterized by that result and its combined standard uncertainty, 
and p is the coverage probability or level of confidence of the interval. 

6.2.3 Whenever practicable, the level of confidence p associated with the interval 
define by U should be estimated and stated.  It should be recognized that 
multiplying uc(y) by a constant provides no new information but presents the 
previously available information but presents the previously available 
information in a different form.  However, it should also be recognized that in 
most cases the level of confidence p (especially for values of p near 1) is rather 
uncertain, not only because of limited knowledge of the probability distribution 
characterized by y and uc(y) (particularly in the extreme portions), but also 
because of the uncertainty of uc(y) itself (see note 2 to 2.3.5, 6.3.2, and annex 
G, especially G.6.6). 

 NOTE – For preferred ways of stating the result of a measurement when the measure of 
uncertainty is uc(y) and when it is U, see 7.2.2 and 7.2.4, respectively. 

6.3 Choosing a coverage factor 
6.3.1 The value of the coverage factor k is chosen on the basis of the level of 

confidence required of the interval y – U to y + U. In general, k will be in the 
range 2 to 3.  However, for special applications k may be outside this range.  
Extensive experience with and full knowledge of the uses to which a 
measurement result will be put can facilitate the selection of a proper value of k.
NOTE – Occasionally, one may find that known correction b for a systematic effect has not 
been applied to the reported result of a measurement, but instead an attempt is made to take the 
effect into account by enlarging the “uncertainty” assigned to the result.  This should be 
avoided; only in very special circumstances should corrections for known significant systematic 
effects not be applied to the result of a measurement (see F.2.4.5 for a specific case and how to 
treat it).  Evaluating the uncertainty of a measurement result should not be confused with 
assigning a safety limit to some quantity. 

6.3.2 Ideally, one would like to be able to choose a specific value of the coverage 
factor k that would provide an interval Y = y ± U = y ± kuc(y) corresponding to a 
particular level of confidence p, such as 95 or 99 percent; equivalently, for a 
given value of k, one would like to be able to state unequivocally the level of 
confidence associated with that interval.  However, this is not easy to do in 
practice because it requires extensive knowledge of the probability distribution 
characterized by the measurement result y and its combined standard 
uncertainty uc(y).  Although these parameters are of critical importance, they 
are by themselves insufficient for the purpose of establishing intervals having 
exactly known levels of confidence. 

6.3.3 Recommendation INC-1 (1980) does not specify how the relation between k 
and p should be established.  This problem is discussed in annex G, and a 
preferred method for its approximate solution is presented in G.4 and 
summarized in G.6.4.  However, a simpler approach, discussed in G.6.6, is 
often adequate in measurement situations where the probability distribution 
characterized by y and uc(y) is approximately normal and the effective degrees 
of freedom of uc(y) is of significant size.  When this is the case, which 
frequently occurs in practice, one can assume that taking k = 2 produces an 
interval having a level of confidence of approximately 95 percent, and that 
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taking k = 3 produces an interval having a level of confidence of approximately 
99 percent. 

 NOTE – A method for estimating the effective degrees of freedom of uc(y) is given in G.4.  Table 
G.2 of annex G can then be used to help decide if this solution is appropriate for a particular 
measurement (see G.6.6). 

 

7- REPORTING UNCERTAINTY 
7.1 General guidance 
7.1.1 In general, as one moves up the measurement hierarchy, more details are 

required on how a measurement result and its uncertainty were obtained.  
Nevertheless, at any level of this hierarchy, including commercial and 
regulatory activities in the marketplace, engineering work in industry, lower-
echelon calibration facilities, industrial research and development, academic 
research, industrial primary standards and calibration laboratories, and the 
national standards laboratories and the BIPM, all of the information necessary 
for the reevaluation of the measurement should be available to others who may 
have need of it.  The primary difference is that at the lower levels of the 
hierarchical chain, more of the necessary information may be made available in 
the form of published calibration and test system reports, test specifications, 
calibration and test certificates, instruction manuals, international standards, 
national standards, and local regulations. 

7.1.2 When the details of a measurement, including how the uncertainty of the result 
was evaluated, are provided by referring to published documents, as is often the 
case when calibration results are reported on a certificate, it is imperative that 
these publications be kept up-to-date so that they are consistent with the 
measurement procedure actually in use. 

7.1.3 Numerous measurements are made every day in industry and commerce 
without any explicit report of uncertainty.  However, many are performed with 
instruments subject to periodic calibration or legal inspection.  If the 
instruments are known to be in conformance with their specifications or with 
the existing normative documents that apply, the uncertainties of their 
indications may be inferred from these specifications or from these normative 
documents. 

7.1.4 Although in practice the amount of information necessary to document a 
measurement result depends on its intended use, the basic principle of what is 
required remains unchanged: when reporting the result of a measurement and 
its uncertainty, it is preferable to err on the side of providing too much 
information rather than too little.  For example, one should 

a) describe clearly the methods used to calculate the measurement result and 
its uncertainty from the experimental observations and input data; 

b) list all uncertainty components and document fully how they were 
evaluated; 
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c) present the data analysis in such a way that each of its important steps can 
be readily followed and the calculation of the reported result can be 
independently repeated if necessary; 

d) give all corrections and constants used in the analysis and their sources. 

 A test of the foregoing list is to ask oneself “Have I provided enough 
information in a sufficiently clear manner that my result can be updated in the 
future if new information or data become available?” 

7.2 Specific guidance 
7.2.1 When reporting the result of a measurement, and when the measure of 

uncertainty is the combined standard uncertainty uc(y), one should 

a) give a full description of how the measurand Y is defined; 

b) give the estimate y of the measurand Y and its combined standard 
uncertainty uc(y); the units of y and uc(y) should always be given; 

c) include the relative combined standard uncertainty uc(y)/|y|, |y| ≠0, when 
appropriate; 

d) give the information outlined in 7.2.7 or refer to a published document 
that contains it. 

 If it is deemed useful for the intended users of the measurement result, for 
example, to aid in future calculations of coverage factors or to assist in 
understanding the measurement, one may indicate 

- the estimated effective degrees of freedom veff (see G.4); 

- the Type A and Type B combined standard uncertainties ucA(y) and ucB(y)
and their estimated effective degrees of freedom veffA and veffB (see G.4.1, 
note 3). 

7.2.2 When the measure of uncertainty is uc(y), it is preferable to state the numeral 
result of the measurement in one of the following four ways in order to prevent 
misunderstanding.  (The quantity whose value is being reported is assumed to 
be a nominally 100 g standard of mass ms; the words in parentheses may be 
omitted for brevity if uc is elsewhere in the document reporting the result.) 

1) “ms = 100,021 47 g with (a combined standard uncertainty) uc = 0,35 mg.” 

2) “ms = 100,021 47(35) g, where the number in parentheses is the numerical 
value of (the combined standard uncertainty) uc referred to the 
corresponding last digits of the quoted result.” 

3) “ms = 100,021 47(0,000 35) g, where the number in parentheses is the 
numerical value of (the combined standard uncertainty) uc expressed in 
the unit of the quoted result.” 

4) “ms = (100,021 47 ± 0,000 35) g, where the number in parentheses is the 
numerical value of (the combined standard uncertainty) uc expressed in 
the quoted of the quoted result.” 

 NOTE –  The ± format should be avoided whenever possible because it has traditionally been 
used to indicate an interval corresponding to a high level of confidence and thus may be 
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confused with expanded uncertainty (see 7.2.4).  Further, although the purpose of the caveat in 
4) is to prevent such confusion, writing Y = y ± uc(y) might still be misunderstood to imply, 
especially if the caveat is accidentally omitted, that an expanded uncertainty with k = 1 is 
intended and that the interval y - uc(y) ≤ Y ≤ y + uc(y) has a specified level of confidence p, 
namely, that associated with the normal distribution (see G.1.3).  As indicated in 6.3.2 and 
annex G, interpreting uc(y) in this way is usually difficult to justify. 

7.2.3 When reporting the result of a measurement, and when the measure of 
uncertainty is the expanded uncertainty U = kuc(y), one should 

a) give a full description of how the measurand Y is defined; 

b) state the result of the measurement as Y = y ± U and give the units of y
and U;

c) include the relative expanded uncertainty U/y, y≠0, when 
appropriate; 

d) give the value of k used to obtain U [or, for the convenience of the user of 
the result, give both k and uc(y)]; 

e) give the approximate level of confidence associated with the interval y ±
U and state how it was determined; 

f) give the information outlined in 7.2.7 or refer to a published document 
that contains it. 

7.2.4 When the measure of uncertainty is U, it is preferable, for maximum clarity, to 
state the numerical result of the measurement as in the following example.  
(The words in parentheses may be omitted for brevity if U, uc, and k are defined 
elsewhere in the document reporting the result.) 

 “ms = (100,021 47 ± 0,000 79) g, where the number following the symbol ± is 
the numerical value of (an expanded uncertainty) U = kuc, with U determined 
from (a combined standard uncertainty) uc = 0,35 mg and (a coverage factor) k
= 2,26 based on the t-distribution for v = 9 degrees of freedom, and defines an 
interval estimated to have a level of confidence of 95 percent.” 

7.2.5 If a measurement determines simultaneously more than one measurand, that is, 
if it provides two or more output estimates yi (see H.2, H.3, and H.4), then, in 
addition to giving yi and uc(yi), give the covariance matrix elements u(yi, yj) or
the elements r(yi, yj) of the correlation coefficient matrix (C.3.6, note 2) (and 
preferably both). 

7.2.6 The numerical values of the estimate y and its standard uncertainty uc(y) or
expanded uncertainty U should not be given with an excessive number of digits.  
It usually suffices to quote uc(y) and U [as well as the standard uncertainties 
u(xi) of the input estimates xi] to at most two significant digits, although in 
some cases it may be necessary to retain additional digits to avoid round-off 
errors in subsequent calculations. 

 In reporting final results, it may sometimes be appropriate to round 
uncertainties up rather than to the nearest digit.  For example, uc(y) = 10,47 mΩ
might be rounded up to 11 mΩ. However, common sense should prevail and a 
value such as u(xi) = 28,05 kHz should be rounded down to 28 kHz.  Output 
and input estimates should be rounded to be consistent with their uncertainties; 
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for example, if y = 10,057 62 Ω with uc(y) = 27 mΩ, y should be rounded to 
10,058 Ω. Correlation coefficients should be given with three-digits accuracy if 
their absolute values are near unity. 

7.2.7 In the detailed report that describes how the result of a measurement and its 
uncertainty were obtained, one should follow the recommendations of 7.1.4 and 
thus 

a) give the value of each input estimate xi and its standard uncertainty u(xi)
together with a description of how they were obtained; 

b) give the estimated covariances or estimated correlation coefficients 
(preferably both) associated with all input estimates that are correlated, 
and the methods used to obtain them; 

c) give the degrees of freedom for the standard uncertainty of each input 
estimate and how it was obtained; 

d) give the functional relationship Y = f(X1, X2, . . . XN) and, when they are 
deemed useful, the partial derivatives or sensitivity coefficients ∂f/∂xi.
However, any such coefficients determined experimentally should be 
given. 

 NOTE – Since the functional relationship f may be extremely complex or may not exist explicitly 
but only as a computer program, it may not always be possible to give f and its derivatives.  The 
function f may then be described in general terms or the program used may be cited by an 
appropriate reference.  In such cases, it is important that it be clear how the estimate y of the 
measurand Y and its combined standard uncertainty uc(y) were obtained. 

 

8- SUMMARY OF PROCEDURE FOR EVALUATING AND EXPRESSING 
UNCERTAINTY 

 The steps to be followed for evaluating and expressing the uncertainty of the 
result of a measurement as presented in this Guide may be summarized as 
follows: 

1 Express mathematically the relationship between the measurand Y and the 
input quantities Xi on which Y depends: Y = f(X1, X2, . . . XN).  The 
function f should contain every quantity, including all corrections and 
correction factors, that can contribute a significant component of 
uncertainty to the result of the measurement (see 4.1.1 and 4.1.2). 

2 Determine xi, the estimated value of input quantity Xi, either on the basis 
of the statistical analysis of series of observations or by other means (see 
4.1.3). 

3 Evaluate the standard uncertainty u(xi) of each input estimate xi. For an 
input estimate obtained from the statistical analysis of series of 
observations, the standard uncertainty is evaluated as described in 4.2 
(Type A evaluation of standard uncertainty).  For an input estimate 
obtained by other means, the standard uncertainty u(xi) is evaluated as 
described in 4.3 (Type B evaluation of standard uncertainty). 
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4 Evaluate the covariances associated with any input estimates that are 
correlated (see 5.2). 

5 Calculate the result of the measurement, that is, the estimate y of the 
measurand Y, from the functional relationship f using for the input 
quantities Xi the estimates xi obtained in step 2 (see 4.1.4). 

6 Determine the combined standard uncertainty uc(y) of the measurement 
result y from the standard uncertainties and covariances associated with 
the input estimates, as described in clause 5.  If the measurement 
determines simultaneously more than one output quantity, calculate their 
covariances (see 7.2.5, H.2, H.3, and H.4). 

7 If it is necessary to give an expanded uncertainty U, whose purpose is to 
provide an interval y – U to y + U that may be expected to encompass a 
large fraction of the distribution of values that could reasonably be 
attributed to the measurand Y, multiply the combined standard uncertainty 
uc(y) by a coverage factor k, typically in the range 2 to 3, to obtain U =
kuc(y).  Select k on the basis of the level of confidence required of the 
interval (see 6.2, 6.3, and especially annex G, which discusses the 
selection of a value of k that produces an interval having a level of 
confidence close to a specified value). 

8 Report the result of the measurement together with its combined standard 
uncertainty uc(y) or expanded uncertainty U as discussed in 7.2.1 and 
7.2.3; use one of the formats recommended in 7.2.2 and 7.2.4.  Describe, 
as outlined also in clause 7, how y and uc(y) or U were obtained. 
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Annex A 
 

Recommendations of Working Group and CIPM 
 

A.1 Recommendation INC-1 (1980) 
 The Working Group on the Statement of Uncertainties (see Foreword) was 

convened in October 1980 by the Bureau of International des Poids et Mesures 
(BIPM) in response to a request of the Comite International des Poids et 
Mesures (CIPM).  It prepared a detailed report for consideration by the CIPM 
that concluded with Recommendation INC-1 (1980) [2].  The English 
translation of this Recommendation is given in 0.7 of this Guide and the French 
text, which is authoritative, is as follows [2]: 

 

A.2 Recommendation 1 (CI-1981) 
 The CIPM reviewed the report submitted to it by the Working Group on the 

Statement of Uncertainties and adopted the following recommendation at its 
70th meeting held in October 1981 [3]: 

 Recommendation 1 (CI-1981) 
 Expression of experimental uncertainties 

 The Comite International des Poids et Mesures  

 considering 

- the need to find an agreed way of expressing measurement uncertainty in 
metrology, 

- the effort that has been devoted to this by many organizations over many 
years, 

- the encouraging progress made in finding an acceptable solution, which 
has resulted from the discussions of the Working Group on the Expression 
of Uncertainties which met at BIPM in 1980, 

 recognizes 

- that the proposals of the Working Group might form the basis of an 
eventual agreement on the expression of uncertainties, 

 recommends 

- that the proposals of the Working Group be diffused widely; 

- that BIPM attempt to apply the principles therein to international 
comparisons carried out under its auspices in the years to come; 

- that other interested organizations be encouraged to examine and test 
these proposals and let their comments be known to BIPM; 

- that after two or three years BIPM report back on the application of these 
proposals. 
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A.3 Recommendation 1 (CI-1986) 
 The CIPM further considered the matter of the expression of uncertainties at its 

75th meeting held in October 1986 and adopted the following recommendation 
[4]: 

 Recommendation 1 (CI-1981) 
 Expression of uncertainties in work carried out under the auspices of the CIPM 

 The Comite International des Poids et Mesures  

 considering the adoption by the Working Group on the Statement of 
Uncertainties of Recommendation INC-1 (1980) and the adoption by the CIPM 
of Recommendation 1 (CI-1981). 

 considering that certain members of Comites Consultatifs may want 
clarification of this Recommendation for the purposes of work that falls under 
their purview, especially for international comparisons, 

 recognizes that paragraph 5 of Recommendation INC-1 (1980) relating to 
particular applications, especially those having commercial significance, is now 
being considered by a working group of the International Standards 
Organization (ISO) common to the ISO, OIML and IEC, with the concurrence 
and cooperation of the CIPM, 

 requests that paragraph 4 of Recommendation INC-1 (1980) should be applied 
by all participants in giving the results of all international comparisons or other 
work done under the auspices of the CIPM and the Comites Consultatifs and 
that the combined uncertainty of type A and type B uncertainties in terms of 
one standard deviation should be given. 
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Annex B 
 

General metrological terms 
 

B.1 Source of definitions 
 The definitions of the general metrological terms relevant to this Guide that are 

given here have been taken from the International vocabulary of basic and 
general terms in metrology (abbreviated VIM), second edition [6], published by 
the International Organization for Standardization (ISO), in the name of the 
seven organizations that supported its development and nominated the experts 
who prepared it: the Bureau International des Poids et Mesures (BIPM), the 
International Electronical Commission (IEC), the International Federation of 
Clinical Chemistry (IFCC), ISO, the International Union of Pure and Applied 
Chemistry (IUPAC), the International Union of Pure and Applied Physics 
(IUPAP), and the International Organization of Legal Metrology (OIML).  The 
VIM should be the first source consulted for the definitions of terms not 
included either here or in the text. 

 NOTE – Some basic statistical terms and concepts are given in annex C, while the terms “true 
value,” “error,” and “uncertainty” are further discussed in annex D. 

B.2 Definitions 
 As in clause 2, in the definitions that follow, the use of parentheses around 

certain words of some terms means that the words may be omitted if this is 
unlikely to cause confusion. 

 The terms in boldface in some notes are additional metrological terms defined 
in those notes, either explicitly or implicitly (see reference [6]). 

B.2.1 (measurable) quantity [VIM 1.1] 

 attribute of a phenomenon, body or substance that may be distinguished 
qualitatively and determined quantitatively. 

 NOTES 

1 The term quantity may refer to a quantity in a general sense [see examples a)] or to a 
particular quantity [see examples b)]. 

 EXAMPLES 

a) quantities in a general sense: length, time, mass, temperature, electrical resistance, 
amount-of-substance concentration; 

b) particular quantities: 

- length of a given rod 

- electrical resistance of a given specimen of wire 

- amount-of-substance concentration of ethanol in a given sample of wine. 
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2 Quantities that can be placed in order of magnitude relative to one another are called 
quantities of the same kind.

3 Quantities of the same kind may be grouped together into categories of quantities, for 
example: 

- work, heat, energy 

- thickness, circumference, wavelength. 

4 Symbols for quantities are given in ISO 31. 

B.2.2 value (of a quantity) [VIM 1.18] 

 magnitude of a particular quantity generally expressed as a unit of measurement 
multiplied by a number 

 EXAMPLES 

a) length of a rod:   5,34 m  or 534 cm; 

b) mass of a body:   0,152 kg or 152 g; 

c) amount of substance of a sample 

 of water (H2O):   0,012 mol or 12 mmol. 
 NOTES 

1 The value of a quantity may be positive, negative or zero. 

2 The value of a quantity may be expressed in more than one way. 

3 The values of quantities of dimension one are generally expressed as pure numbers. 

4 A quantity that cannot be expressed as a unit of measurement multiplied by a number may 
be expressed by reference to a conventional reference scale or to a measurement 
procedure or to both. 

B.2.3 true value (of a quantity) [VIM 1.19] 

 value consistent with the definition of a given particular quantity 
 NOTES 

1 This is a value that would be obtained by a perfect measurement. 

2 True values are by nature indeterminate. 

3 The indefinite article “a,” rather than the definite article “the,” is used in conjunction with 
“true value” because there may be many values consistent with the definition of a given 
particular quantity. 

 Guide Comment:  See annex D, in particular D.3.5, for the reasons why the 
term “true value” is not used in this Guide and why the terms “true value of a 
measurand” (or of a quantity) and “value of a measurand” (or of a quantity) are 
viewed as equivalent. 

B.2.4 conventional true value (of a quantity) [VIM 1.20] 

 value attributed to a particular quantity and accepted, sometimes by convention, 
as having an uncertainty appropriate for a given purpose 
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 EXAMPLES 

a) at a given location, the value assigned to the quantity realized by a 
reference standard may be taken as a conventional true value; 

b) the CODATA (1986) recommended value for the Avogadro constant: 
6,022 136 7 x 1023 mol-1.

NOTES 

1 “Conventional true value” is sometimes called assigned value, best estimate of the value,
conventional value or reference value. “Reference value,” in this sense, should not be 
confused with “reference value” in the sense used in the Note to [VIM] 5.7. 

2 Frequently, a number of results of measurements of a quantity is used to establish a 
conventional true value. 

 Guide Comment:  See the Guide Comment to B.2.3. 

B.2.5 measurement [VIM 2.1] 

 set of operations having the object of determining a value of a quantity 
 NOTE – The operations may be performed automatically. 

B.2.6 principle of measurement [VIM 2.3] 

 scientific basis of a measurement 

 EXAMPLES 

a) the thermoelectric effect applied to the measurement of temperature; 

b) the Josephson effect applied to the measurement of electric potential 
difference; 

c) the Doppler effect applied to the measurement of velocity; 

d) the Raman effect applied to the measurement of the wave number of 
molecular vibrations. 

B.2.7 method of measurement [VIM 2.4] 

 logical sequence of operations, described generically, used in the performance 
of measurements 

 NOTE – Methods of measurement may be qualified in various ways such as: 

- substitution method 

- different method 

- null method. 

B.2.8 measurement procedure [VIM 2.5] 

 set of operations, described specifically, used in the performance of particular 
measurements according to a given method 

 NOTE – A measurement procedure is usually recorded in a document that is sometimes itself 
called a “measurement procedure” (or a measurement method) and is usually in sufficient 
detail to enable an operator to carry out a measurement without additional information. 
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B.2.9 measurand [VIM 2.6] 
particular quantity subject to measurement 

 EXAMPLE – vapour pressure of a given sample of water at 20oC. 
 NOTE – The specification of a measurand may require statements about quantities such as 

time, temperature and pressure. 

B.2.10 influence quantity [VIM 2.7] 

 quantity that is not the measurand but that affects the result of the measurement 

 EXAMPLES 

a) temperature of a micrometer used to measure length; 

b) frequency in the measurement of the amplitude of an alternating electric 
potential difference; 

c) bilirubin concentration in the measurement of haemoglobin concentration 
in a sample of human blood plasma. 

 Guide Comment: The definition of influence quantity is understood to include 
values associated with measurement standards, reference materials, and 
reference data upon which the result of a measurement may depend, as well as 
phenomena such as short-term measuring instrument fluctuations and quantities 
such as ambient temperature, barometric pressure, and humidity. 

B.2.11 result of a measurement [VIM 3.1] 

 value attributed to a measurand, obtained by measurement  
NOTES 

1 When a result is given, it should be made clear whether it refers to: 

- the indication 

- the uncorrected result 

- the corrected result 

 and whether several values are averaged. 

2 A complete statement of the result of a measurement includes information about the 
uncertainty of measurement. 

B.2.12 uncorrected result [VIM 3.3] 

 result of a measurement before correction for systematic error 

B.2.13 corrected result [VIM 3.4] 

 result of a measurement after correction for systematic error 

B.2.14 accuracy of measurement [VIM 3.5] 

 closeness of the agreement between the result of a measurement and a true 
value of the measurand 
NOTES 

1 “Accuracy” is a qualitative concept. 

2 The term precision should not be used for “accuracy.” 
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 Guide Comment:  See the Guide Comment to B.2.3. 

B.2.15 repeatability (of results of measurement) [VIM 3.6] 

 closeness of the agreement between the results of successive measurements of 
the same measurand carried out under the same conditions of measurement 
NOTES 

1 These conditions are called repeatability conditions.

2 Repeatability conditions include: 

- the same measurement procedure 

- the same observer 

- the same measuring instrument, used under the same conditions 

- the same location 

- repetition over a short period of time. 

3 Repeatability may be expressed quantitatively in terms of the dispersion characteristics of 
the results. 

B.2.16 reproducibility (of results of measurement) [VIM 3.7] 

 closeness of the agreement between the results of measurements of the same 
measurand carried out under changed conditions of measurement 
NOTES 

1 A valid statement of reproducibility requires specification of the conditions changed. 

2 The changed conditions may include: 

- principle of measurement 

- method of measurement 

- observer 

- measuring instrument 

- reference standard 

- location 

- conditions of use 

- time. 

3 Reproducibility may be expressed quantitatively in terms of the dispersion characteristics 
of the results. 

4 Results are here usually understood to be corrected results. 

B.2.17 experimental standard deviation [VIM 3.8] 

 for a series of n measurements of the same measurand, the quantity s(qk)
characterizing the dispersion of the results and given by the formula: 

 s(qk) =
( )q q
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k

n
k −∑

=
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1
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 qk being the result of the kth measurement and q being the arithmetic mean of 
the n results considered. 
NOTES 

1 Considering the series of n values as a sample of a distribution, q is an unbiased estimate 
of the main µq, and s2(qk) is an unbiased estimate of the variance σ2, of that distribution. 

2 The expression s(qk)/ n is an estimate of the standard deviation of the distribution of q
is called the experimental standard deviation of the mean.

3 “Experimental standard deviation of the mean” is sometimes incorrectly called standard 
error of the mean.

Guide Comment:  Some of the symbols used in the VIM have been changed in 
order to achieve consistency with the notation used in 4.2 of this Guide. 

B.2.18 uncertainty (of measurement) [VIM 3.9] 

 parameter, associated with the result of a measurement, that characterizes the 
dispersion of the values that could reasonably be attributed to the measurand 
NOTES 

1 The parameter may be, for example, a standard deviation (or a given multiple of it), or the 
half-width of an interval having a stated level of confidence. 

2 Uncertainty of measurement comprises, in general, many components.  Some of these 
components may be evaluated from the statistical distribution of the results of series of 
measurements and can be characterized by experimental standard deviations.  The other 
components, which can also be characterized by standard deviations, are evaluated from 
assumed probability distributions based on experience or other information. 

3 It is understood that the result of the measurement is the best estimate of the value of the 
measurand, and that all components of uncertainty, including those arising from systematic 
effects, such as components associated with corrections and reference standards, 
contribute to the dispersion. 

 Guide Comment:  It is pointed out in the VIM that this definition and the notes 
are identical to those in this Guide (see 2.2.3). 

B.2.19 error (of measurement) [VIM 3.10] 

 result of a measurement minus a true value of the measurand 
NOTES 

1 Since a true value cannot be determined, in practice a conventional true value is used (see 
[VIM] 1.19 [B.2.3] and 1.20 [B.2.4]). 

2 When it is necessary to distinguish “error” from “relative error,” the former is sometimes 
called absolute error of measurement. This should not be confused with absolute value of 
error, which is the modulus of the error. 

 Guide Comment:  If the result of a measurement depends on the values of 
quantities other than the measurand, the errors of the measured values of these 
quantities contribute to the error of the result of the measurement.  Also see the 
Guide Comment to B.2.22 and to B.2.3. 
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B.2.20 relative error [VIM 3.12] 

 error of measurement divided by a true value of the measurand 
 NOTE – Since a true value cannot be determined, in practice a conventional true value is used 

(see [VIM] 1.19 [B.2.3] and 1.20 [B.2.4]). 

 Guide Comment:  See the Guide Comment to B.2.3. 

B.2.21 random error [VIM 3.13] 

 result of a measurement minus the mean that would result from an infinite 
number of measurements of the same measurand carried out under repeatability 
conditions 
NOTES 

1 Random error is equal to error minus systematic error. 

2 Because only a finite number of measurements can be made, it is possible to determine only 
an estimate of random error. 

 Guide Comment:  See the Guide Comment to B.2.22. 

B.2.22 systematic error [VIM 3.14] 

 mean that would result from an infinite number of measurements of the same 
measurand carried out under repeatability conditions minus a true value of the 
measurand 
NOTES 

1 Systematic error is equal to error minus random error. 

2 Like true value, systematic error and its causes cannot be completely known. 

3 For a measuring instrument, see “bias” ([VIM] 5.25). 

 Guide Comment:  The error or the result of a measurement (see B.2.19) may 
often be considered as arising from a number of random and systematic effects 
that contribute individual components of error to the error of the result  Also see 
the Guide Comment to B.2.19 and to B.2.3. 

B.2.23 correction [VIM 3.15] 

 value added algebraically to the uncorrected result of a measurement to 
compensate for systematic error 
NOTES 

1 The correction is equal to the negative of the estimated systematic error. 

2 Since the systematic error cannot be known perfectly, the compensation cannot be 
complete. 

B.2.24 corrected factor [VIM 3.16] 

 numerical factor by which the uncorrected result of a measurement is multiplied 
to compensate for systematic error 

 NOTE – Since the systematic error cannot be known perfectly, the compensation cannot be 
complete. 
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Annex C 
 

Basic statistical terms and concepts 
 

C.1 Source of definitions 
 The definition of the basic statistical terms given in this annex are taken from 

International Standard ISO 3534-1 [7].  This should be the first source 
consulted for the definitions of terms not included here.  Some of these terms 
and their underlying concepts are elaborated upon in C.3 following the 
presentation of their formal definitions in C.2 in order to facilitate further the 
use of this Guide.  However, C.3, which also includes the definitions of some 
related terms, is not based directly on ISO 3534-1. 

 

C.2 Definitions 
 As in clause 2 and annex B, the use of parentheses around certain words of 

some terms means that the words may be omitted if this is unlikely to cause 
confusion. 

 Terms C.2.1 to C.2.14 are defined in terms of the properties of populations.  
The definitions of terms C.2.15 to C.2.31 are related to a set of observations 
(see reference [7]). 

C.2.1 probability [ISO 3534-1, 1.1] 

 A real number in the scale 0 to 1 attached to a random event. 
 NOTE – It can be related to a long-run relative frequency of occurrence or to a degree of belief 

that an event will occur.  For a high degree of belief, the probability is near 1. 

C.2.2 random variable; variate [ISO 3534-1, 1.2] 

 A variable that may take any of the values of a specified set of values and with 
which is associated a probability distribution ([ISO 3534-1] 1.3 [C.2.3]). 
NOTES 

1 A random variable that may take only isolated values is said to be “discrete.”  A random 
variable which may take any value within a finite or infinite interval is said to be 
“continuous.” 

2 The probability of an event A is denoted by Pr(A) or P(A). 

 Guide Comment:  The symbol Pr(A) is used in this Guide in place of the 
symbol Pr(A) used in ISO 3534-1. 

C.2.3 probability distribution (of a random variable) [ISO 3534-1, 1.3] 

 A function giving the probability that a random variable takes any given value 
or belongs to a given set of values. 

 NOTE – The probability on the whole set of values of the random variable equals 1. 
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C.2.4 distribution function [ISO 3534-1, 1.4] 

 A function giving, for every value x, the probability that the random variable X
be less than or equal to x: 

F(x) = Pr(X ≤ x
C.2.5 probability density function (for a continuous random variable [ISO 3534-

1, 1.5] 

 The derivative (when it exists) of the distribution function: 

f(x) = dF(x) / dx
NOTE – f(x)dx is the “probability element”: 

f(x)/dx  =  Pr(x < X < x + dx)  

C.2.6 probability mass function [ISO 3534-1, 1.6] 

 A function giving, for each value xi of a discrete random variable X, the 
probability pi that the random variable equals xi:

pi = Pr(X = xi)

C.2.7 parameter [ISO 3534-1, 1.12] 

 A quantity used in describing the probability distribution of a random variable. 

C.2.8 correlation [ISO 3534-1, 1.13] 

 The relationship between two or several random variables within a distribution 
of two or more random variables. 

 NOTE – Most statistical measures of correlation measure only the degree of linear 
relationship. 

C.2.9 expectation (of a random variable or of a probability distribution); expected 
value; mean [ISO 3534-1, 1.18] 

1 For a discrete random variable X taking the values xi with the probabilities 
pi, the expectation, if it exists, is 

 µ = E(X) = ∑ pi xi

the sum being extended over all the values xi which can be taken by X.

2 For a continuous random variable X having the probability density function 
f(x), the expectation, if it exists, is 

 µ = E(X) = ∫ x f(x) d x

the integral being extended over the interval(s) of variation of X.

C.2.10 centred random variable [ISO 3534-1, 1.21] 

 A random variable the expectation of which equal xero. 
 NOTE – If the random variable X has an expectation equal to µ, the corresponding centred 

random variable is (X - µ). 
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C.2.11 variance (of a random variable or of a probability distribution) [ISO 3534-1, 
1.22] 

 The expectation of the square of the centred random variable ([ISO 3534-1] 
1.21 [C.2.10]): 

 σ2 = V(X) = E{[X – E(X)]2}

C.2.12 standard deviation (of a random variable or of a probability distribution) [ISO 
3534-1, 1.23] 

 The positive square root of the variance: 

 σ = V X( )  

C.2.13 central moment1) of order q [ISO 3534-1, 1.28] 

 In a univariate distribution, the expectation of the qth power of the centred 
random variable (X - µ): 

 E[(X - µ)q]
NOTE – The central moment of order 2 is the variance ([ISO 3534-1] 1.22 [C.2.11]) of the 
random variable X. 

C.2.14 normal distribution; Laplace-Gauss distribution [ISO 3534-1, 1.37] 

 The probability distribution of a continuous random variable X, the probability 
density function of which is 

 f(x) = 1

2σ π
 exp −

−

















1
2

2x µ
σ

for - ∞ < x < + ∞.
NOTE – µ is the expectation and σ is the standard deviation of the normal distribution. 

C.2.15 characteristic [ISO 3534-1, 2.2] 

 A property which helps to identify or differentiate between items of a given 
population. 

 NOTE – The characteristic may be either quantitative (by variables) or qualitative (by 
attributes). 

C.2.16 population [ISO 3534-1, 2.3] 

 The totality of items under consideration. 
 NOTE – In the case of a random variable, the probability distribution [ISO 3534-1] 1.3 

[C.2.3]) is considered to define the population of that variable. 

 

___________________ 
1) If, in the definition of the moments, the quantities X, X – a, Y, Y – b, etc. are replaced by their absolute 

values, i.e. |X|, |X – a|, |Y|, |Y – b|, etc., other moments called “absolute moments” are defined. 
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C.2.17 frequency [ISO 3534-1, 2.11] 

 The number of occurrences of a given type of event or the number of 
observations falling into a specified class. 

C.2.18 probability [ISO 3534-1, 2.15] 

 The empirical relationship between the values of a characteristic and their 
frequencies or their relative frequencies. 

 NOTE – The distribution may be graphically presented as a histogram ([ISO 3534-1] 2.17), bar 
chart ([ISO 3534-1] 2.18), cumulative frequency polygon ([ISO 3534-1] 2.19), or as a two-way 
table ([ISO 3534-1] 2.22). 

C.2.19 arithmetic mean; average [ISO 3534-1, 2.26] 

 The sum of values divided by the number of values. 
NOTES 

1 The term “mean” is used generally when referring to a population parameter and the term 
“average” when referring to the result of a calculation on the data obtained in a sample. 

2 The average of a simple random sample taken from a population is an unbiased estimator 
of the mean of this population.  However, other estimators, such as the geometric or 
harmonic mean, or the median or mode, are sometimes used. 

C.2.20 variance [ISO 3534-1, 2.33] 

 A measure of dispersion, which is the sum of the squared deviations of 
observations from their average divided by one less than the number of 
observations. 

 EXAMPLE – For n observations xi, x2, . . . . Xn with average 

 x = (1/n) ∑ xi

the variance is 

 S2 = 1
1n −

∑ (xi - x )2

NOTES 

1 The sample variance is an unbiased estimator of the population variance. 

2 The variance is n/(n – 1) times the central moment of order 2 (see note to [ISO 3534-1] 
2.39). 

 Guide Comment:  The variance defined here is more appropriately designated 
the “sample estimate of the population variance.”  The variance of a sample is 
usually defined to be the central moment of order 2 of the sample (see C.2.13 
and C.2.22). 

C.2.21 standard deviation [ISO 3534-1, 2.34] 

 The positive square root of the variance. 
 NOTE – The sample standard deviation is a biased estimator of the population standard 

deviation. 
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C.2.22 central moment of order q [ISO 3534-1, 2.37] 

 In a distribution of a single characteristic, the arithmetic mean of the qth power 
of the difference between the observed values and their average : 

 1
n

( )x x
i

i
q−∑

NOTE – The central moment of order 1 is equal to zero. 

C.2.23 statistic [ISO 3534-1, 2.45] 

 A function of the sample random variables. 

 NOTE – A statistic, as a function of random variables, is also a random variable 
and as such it assumes different values from sample to sample.  The value of 
the statistic obtained by using the observed values in this function may be used 
in a statistical test or as an estimate of a population parameter, such as a mean 
or a standard deviation. 

C.2.24 estimation [ISO 3534-1, 2.49] 

 The operation of assigning, from the observations in a sample, numerical values 
to the parameters of a distribution chosen as the statistical model of the 
population from which this sample is taken. 

 NOTE – A result of this operation may be expressed as a single value (point estimate; see ([ISO 
3534-1] 2.51 [C.2.26]) or as an interval estimate (see [ISO 3534-1] 2.57 [C.2.27] and 2.58 
[C.2.28]). 

C.2.25 estimator [ISO 3534-1, 2.50] 

 A statistic used to estimate a population parameter. 

C.2.26 estimate [ISO 3534-1, 2.51] 

 The value of an estimator obtained as a result of an estimation. 

C.2.27 two-sided confidence interval [ISO 3534-1, 2.57] 

 When T1 and T2 are two functions of the observed values such that, θ being a 
population parameter to be estimated, the probability Pr(T1 ≤ θ ≤ T2) is at least 
equal to (1 - α) [where (1 - α) is a fixed number, positive and less than 1], the 
interval between T1 and T2 is a two-sided (1 - α) confidence interval for θ). 
NOTES 

1 The limits T1 and T2 of the confidence interval are statistics ([ISO 3534-1] 2.45 [C.2.23]) 
and as such will generally assume different values from sample to sample. 

2 In a long series of samples, the relative frequency of cases where the true value of the 
population parameter θ is covered by the confidence interval is greater than or equal to (1 
- α). 

C.2.28 one-sided confidence interval [ISO 3534-1, 2.58] 

 When T is a function of the observed values such that, θ being a population 
parameter to be estimated, the probability Pr(T ≥ θ) [or the probability Pr(T ≤
θ)] is at least equal to (1 - α) [where (1 - α) is a fixed number, positive and less 
than 1], the interval from the smallest possible value of  θ up to T (or the 
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interval from T up to the largest possible value of θ is a one-sided (1 - α)
confidence interval for θ.
NOTES 

1 The limit T of the confidence interval is a statistic ([ISO 3534-1] 2.45 [C.2.23]) and such 
will generally assume different values from sample to sample. 

2 See note 2 of ([ISO 3534-1] 2.57 [C.2.27]). 

C.2.29 confidence coefficient; confidence level [ISO 3534-1, 2.59] 

 The value (1 - α) of the probability associated with a confidence interval or a 
statistical coverage interval.  (See [ISO 3534-1] 2.57 [C.2.27], 2.58 [C.2.28], 
and 2.61 [C.2.30]). 

 NOTE – (1 - α) is often expressed as a percentage. 

C.2.30 statistical coverage interval [ISO 3534-1, 2.61] 

 An interval for which it can be stated with a given level of confidence that it 
contains at least a specified proportion of the population. 
NOTES 

1 When both limits are defined by statistics, the interval is two-sided.  When one of the two 
limits is not finite or consists of the boundary of the variable, the interval is one-sided. 

2 Also called “statistical tolerance interval”.  This term should not be used because it may 
cause confusion with “tolerance interval” which is defined in ISO 3532-2. 

C.2.31 degrees of freedom [ISO 3534-1, 2.85] 

 In general, the number of terms in a sum minus the number of constraints on the 
terms of the sum. 

C.3 Elaboration of terms and concepts 
C.3.1 Expectation 
 The expectation of a function g(z) over a probability density function p(z) of the 

random variable z is defined by 

 E[g(z)]  =   ∫ g(z) p(z) d z

where, from the definition of p(z), ∫ p(z) d z = 1. The expectation of the 
random variable z, denoted by µz, and which is also termed the expected value 
or the mean of z, is given by 

 µz = E(z) = ∫ z p(z) d z

It is estimated statistically by , the arithmetic mean or average of n independent 
observations zi of the random variable z, the probability density function of 
which is p(z): 

 z = 1
n

z
i

n
i

=
∑

1
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C.3.2 Variance 
 The variance of a random variable is the expectation of its quadratic deviation 

about its expectation.  Thus the variance of random variable z with probability 
density function p(z) is given by 

 σ2(z)  =  ∫ (z - µz)2 p(z) d z

where µz is the expectation of z. The variance σ2(z) may be estimated by 

 s2(zi) = 1
1

2

1n
z z

i

n

−
−∑

=
( )i , where z = 1

n
z

i

n
1

1=
∑

and the zi are n independent observations of z.
NOTES 

1 The factor n – 1 in the expression for s2(zi) arises from the correlation between zi and 
z and reflects the fact that there are only n – 1 independent items in the set {zi - z }. 

2 If the expectation µz of z is known, the variance may be estimated by 

 s2(zi) = 1
n

( )z
i

n
i z−

=
∑ µ 2

1

The variance 

 s2( z ) =
s z

n

2 ( )i = 1
1

2

1n n
z z

i

n

( )
( )

−
−∑

=
i

C.3.3 Standard deviation  
 The standard deviation is the positive square root of the variance.  Whereas a 

Type A standard uncertainty is obtained by taking the square root of the 
statistically evaluated variance, it is often more convenient when determining a 
Type B standard uncertainty to evaluate a nonstatistical equivalent standard 
deviation first and then to obtain the equivalent variance by squaring the 
standard deviation. 

C.3.4 Covariance 
 The covariance of two random variables is a measure of their mutual 

dependence.  The covariance of random variables y and z is defined by 

 cov(y, z) = cov(z, y) = E{[y – E(y)] [z – E(z)]} which leads to 

 cov(y, z) = cov(z, y)

= ∫ ∫ (y - µy) (z - µz) p(y, z) dy dz

= ∫ ∫ y z p(y, z) dy dz - µy µz

where p(y, z) is the joint 

 s(yi, zi) = 1
1

2

1n
y y z z

i

n

−
− −∑

=
( )( )i i  
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 where 

 y = 1
n

y
i

n
i

=
∑

1
and    z = 1

n
z

i

n
i

=
∑

1

NOTE – The estimated covariance of the two means y and z is given by s( y , z ) = s(yi, zi)/n. 

C.3.5 Covariance matrix 
 For a multivariate probability distribution, the matrix V with elements equal to 

the variances and covariances of the variables is termed the covariance matrix.  
The diagonal elements, v(z, z) ≡ σ2(z) or s(zi, zi) ≡ s2(zi), are the variances, while 
the off-diagonal elements, v(y, z) or s(yi, zi), are the covariances.  

C.3.6 Correlation coefficient 
 The correlation coefficient is a measure of the relative mutual dependence of 

two variables, equal to the ratio of their covariances to the positive square root 
of the product of their variances.  Thus 

 ρ(y, z) = ρ(z, y) = u y z

u y y v z z

( , )

( , ) ( , )
 = v y z

y z
( , )

( ) ( )σ σ

with estimates 

 ρ(yi, zi) = ρ(zi, yi) =
s y z

s y y s z z

( , )

( , ) ( , )
i i

i i i i

 =
s y z

s y s z
( , )

( ) ( )
i i

i i
 

The correlation coefficient is a pure number such that –1 ≤ ρ ≤ +1 or –1 ≤ r(yi,
zi) ≤ +1. 
NOTES 

1 Because ρ and r are pure numbers in the range –1 to +1 inclusive, while covariances are 
usually quantities with inconvenient physical dimensions and magnitudes, correlation 
coefficients are generally more useful than covariances. 

2 For multivariate probability distributions, the correlation coefficient matrix is usually 
given in place of the covariance matrix.  Since ρ(y, y) = 1 and r(yi, yi) = 1, the diagonal 
elements of this matrix are unity.      

3 If the input estimates xi and xj are correlated (see 5.2.2) and if a change δi and xi produces 
a change δi in xj, then the correlation coefficient associated with xi and xj is estimated 
approximately by 

 r(xi, xj) = u(xi)δi/u(xj) δi

This relation can serve as a basis for estimating correlation coefficients experimentally.  It 
can also be used to calculate the approximate change in one input estimate due to a change 
in another if their correlation coefficient is known. 

C.3.7 Independence 
 Two random variables are statistically independent if their joint probability 

distribution is the product of their individual probability distributions. 
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 NOTE – If two random variables are independent, their covariance and correlation coefficient 
are zero, but the converse is not necessarily true. 

C.3.8 The t-distribution; Student’s distribution 
 The t-distribution or Student’s distribution is the probability distribution of a 

continuous random variable t whose probability density function is 

 ρ(t, v) = 1
πv

Γ

Γ

v

v
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v( )/

 

- ∞ < t < + ∞

where Γ is the gamma function and v > 0.  The expectation of the t-distribution 
is zero and its variance is v/(v – 2) for v > 2.  As v → ∞, the t-distribution 
approaches a normal distribution with µ = 0 and σ = 1 (see C.2.14). 

 The ( z - µz)/s( z ) is the t-distribution if the random variable z is normally 
distributed with expectation µz, where z is the arithmetic mean of n
independent observations zi of z, s(zi) is the experimental standard deviation of 
the n observations, and x( z ) = x(zi)/ n is the experimental standard 
deviation of the mean z with v = n = 1 degrees of freedom. 
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Annex D 
 

“True” value, error, and uncertainty 
 

The term true value (B.2.3) has traditionally been used in publications on uncertainty but 
not in this Guide for the reasons presented in this annex.  Because the terms “measurand,” 
“error,” and “uncertainty” are frequently misunderstood, this annex also provides 
additional discussion of the ideas underlying them to supplement the discussion given in 
clause 3.  Two figures are presented to illustrate why the concept of uncertainty adopted in 
this Guide is based on the measurement result and its evaluated uncertainty rather than on 
the unknowable quantities “true” value and error. 

 
D.1 The measurand 
D.1.1 The first step in making a measurement is to specify the measurand cannot be 

specified by a value but only by a description of a quantity.  However, in 
principle, a measurand cannot be completely described without an infinite 
amount of information. Thus, to the extent that it leaves room for interpretation, 
incomplete definition of the measurand introduces into the uncertainty of the 
result of a measurement a component of uncertainty that may or may not be 
significant relative to the accuracy required of the measurement. 

D.1.2 Commonly, the definition of a measurand specifies certain physical states and 
conditions. 

 EXAMPLE – The velocity of sound in dry air of composition (mole fraction) N2 = 0,7808, 
O2 = 0,2095, Ar = 0,009 35, and CO2 = 0,000 35 at the temperature T = 273,15 K and 
pressure p = 101 325 Pa. 

 
D.2 The realized quantity  
D.2.1 Ideally, the quantity realized for measurement would be fully consistent with 

the definition of the measurand.  Often, however, such a quantity cannot be 
realized and the measurement is performed on a quantity that is an 
approximation of the measurand. 

 

D.3 The “true” value and the corrected value 
D.3.1 The result of the measurement of the realized quantity is corrected for the 

difference between that quantity and the measurand in order to predict what the 
measurement result would have been if the realized quantity had in fact fully 
satisfied the definition of the measurand.  The result of the measurement of the 
realized quantity is also corrected for all other recognized significant systematic 
effects.  Although the final corrected result is sometimes viewed as the best 
estimate of the “true” value of the measurand, in reality the result is simply the 
best estimate of the value of the quantity intended to be measured. 
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D.3.2 As an example, suppose that the measurand is the thickness of a given sheet of 
material at a specified temperature.  The specimen is brought to a temperature 
near the specified temperature and its thickness at a particular place is measured 
with a micrometer.  The thickness of the material at that place and temperature, 
under the pressure applied by the micrometer, is the realized quantity. 

D.3.3 The temperature of the material at the time of the measurement and the applied 
pressure are determined.  The uncorrected result of the measurement of the 
realized quantity is then corrected by taking into account the calibration curve 
of the micrometer, the departure of the temperature of the specimen from the 
specified temperature, and the slight compression of the specimen under the 
applied pressure. 

D.3.4 The corrected result may be called the best estimate of the “true” value, “true” 
in the sense that it is the value of a quantity that is believed to satisfy fully the 
definition of the measurand; but had the micrometer been applied to a different 
part of the sheet of material, the realized quantity would have been different 
with a different “true” value.  However, that “true” value would be consistent 
with the definition of the measurand because the latter did not specify that the 
thickness was to be determined at a particular place on the sheet.  Thus in this 
case, because of an incomplete definition of the measurand, the “true” value has 
an uncertainty that can be evaluated from measurements made at different 
places on the sheet.  At some level, every measurand has such an “intrinsic” 
uncertainty that can in principle be estimated in some way.  This is the 
minimum uncertainty with which a measurand can be determined, and every 
measurement that achieves such an uncertainty may be viewed as the best 
possible measurement of the measurand.  To obtain a value of the quantity in 
question having a smaller uncertainty requires that the measurand be more 
completely defined. 
NOTES 

1 In the example, the measurand’s specification leaves many other matters in doubt that 
might conceivably affect the thickness: the barometric pressure, the humidity, the attitude 
of the sheet in the gravitational field, the way it is supported, etc. 

2 Although a measurand should be defined in sufficient detail that any uncertainty arising 
from its incomplete definition is negligible in comparison with the required accuracy of the 
measurement, it must be recognized that this may not always be practicable.  The definition 
may, for example, be incomplete because it does not specify parameters that may have 
been assumed, unjustifiably, to have negligible effect; or it may imply conditions that can 
never be fully met and whose imperfect realization is difficult to take into account.  For 
instance, in the example of D.1.2, the velocity of sound implies infinite plane waves of 
vanishingly small amplitude.  To the extent that the measurement does not meet these 
conditions, diffraction and nonlinear effects need to be considered. 

3 Inadequate specification of the measurand can lead to discrepancies between the results of 
measurements of ostensibly the same quantity carried out in different laboratories. 

D.3.5 The term “true value of a measurand” or of a quantity (often truncated to “true 
value”) is avoided in this Guide because the word “true” is viewed as 
redundant.  “Measurand” (see B.2.9) means “particular quantity subject to 
measurement,” hence “value of a measurand” means “value of a particular 
quantity subject to measurement.”  Since “particular quantity” is generally 
understood to mean a definite or specified quantity (see B.2.1, note 1), the 
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adjective “true” in “true value of a measurand” (or in “true value of a quantity”) 
is unnecessary – the “true” value of the measurand (or quantity) is simply the 
value of the measurand (or quantity).  In addition, as indicated in the discussion 
above, a unique “true” value is only an idealized concept. 

 

D.4 Error 
 A corrected measurement result is not the value of the measurand – that is, it is 

in error – because of imperfect measurement of the realized quantity due to 
random variations of the observations (random effects), inadequate 
determination of the corrections for systematic effects, and incomplete 
knowledge of certain physical phenomena (also systematic effects).  Neither the 
value of the realized quantity nor the value of the measurand can ever be known 
exactly; all that can be known  is their estimated values.  In the example above 
the measured thickness of the sheet may be in error, that is, may differ from the 
value of the measurand (the thickness of the sheet), because each of the 
following may combine to contribute an unknown error to the measurement 
result: 

a) slight differences between the indications of the micrometer when it is 
repeatedly applied to the same realized quantity; 

b) imperfect calibration of the micrometer; 

c) imperfect measurement of the temperature and of the applied pressure; 

d) incomplete knowledge of the effects of temperature, barometric pressure, 
and humidity on the specimen or the micrometer or both. 

 

D.5 Uncertainty 
D.5.1 Whereas the exact of the contributions to the error of a result of a measurement 

are unknown and unknowable, the uncertainties associated with the random and 
systematic effects that give rise to the error can be evaluated.  But, even if the 
evaluated uncertainties are small, there is still no guarantee that the error in the 
measurement result is small; for in the determination of a correction or in the 
assessment of incomplete knowledge, a systematic effect may have been 
overlooked because it is unrecognized.  Thus the uncertainty of a result of a 
measurement is not necessarily an indication of the likelihood that the 
measurement result is near the value of the measurand; it is simply an estimate 
of the likelihood of nearness to the best value that is consistent with presently 
available knowledge. 

D.5.2 Uncertainty of measurement is thus an expression of the fact that, for a given 
measurand and a given result of measurement of it, there is not one value but an 
infinite number of values dispersed about the result that are consistent with all 
of the observations and data and one’s knowledge of the physical world, and 
that with varying degrees of credibility can be attributed to the measurand. 
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D.5.3 It is fortunate that in many practical measurement situations, much of the 
discussion of this annex does not apply.  Examples are when the measurand is 
adequately well defined; when standards or instruments are calibrated using 
well-known reference standards that are traceable to national standards; and 
when the uncertainties of the calibration corrections are insignificant compared 
to the uncertainties arising from random effects on the indications of 
instruments, or from a limited number of observations (see E.4.3).  
Nevertheless, incomplete knowledge of influence quantities and their effects 
can often contribute significantly to the uncertainty of the result of a 
measurement. 

 

D.6 Graphical representation 
D.6.1 Figure D.1 depicts some of the ideas discussed in clause 3 of this Guide and in 

this annex.  It illustrates why the focus of this Guide is uncertainty and not 
error.  The exact error of a result of a measurement is, in general, unknown and 
unknowable.  All one can do is estimate the values of input quantities, including 
corrections for recognized systematic effects, together with their standard 
uncertainties (estimated standard deviations), either from unknown probability 
distributions that are sampled by means of repeated observations, or from 
subjective or a priori distributions based on the pool of available information; 
and then calculate the measurement result from the estimated values of the 
input quantities and the combined standard uncertainty of that result from the 
standard uncertainties of those estimated values.  Only if there is a sound basis 
for believing that all of this has been done properly, with no significant 
systematic effects having been overlooked, can one assume that the 
measurement result is a reliable estimate of the value of the measurand and that 
its combined standard uncertainty is a reliable measure of its possible error. 
NOTES 

1 In figure D.1a, the observations are shown as a histogram for illustrative purposes (see 
4.4.3 and figure 1b). 

2 The correction for an error is equal to the negative of the estimate of the error.  Thus in 
figure D.1, and in figure D.2 as well, an arrow that illustrates the correction for an error is 
equal in length but points in the opposite direction to the arrow that would have illustrated 
the error itself, and vice versa.  The text of the figure makes clear if a particular arrow 
illustrates a correction or an error. 

D.6.2 Figure D.2 depicts some of the same ideas illustrated in figure D.1 but in a 
different way.  Moreover, it also depicts the idea that there can be many values 
of the measurand if the definition of the measurand is incomplete (entry g of the 
figure).  The uncertainty arising from this incompleteness of definition as 
measured by the variance is evaluated from measurements of multiple 
realizations of the measurand, using the same method, instruments, etc. (see 
D.3.4). 

 NOTE – In the column headed “Variance” the variances are understood to be the variance u yi
2 ( )  

defined in equation (11) in 5.1.3; hence they add linearly as shown. 
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Figure D.1.  Graphical illustration of value, error, and uncertainty 
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Figure D.2.  Graphical illustration of values, error, and uncertainty 
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Annex E 
 

Motivation and basis for Recommendation INC-1 (1980) 
 

This annex gives a brief discussion of both the motivation and statistical basis for 
Recommendation INC-1 (1980) of the Working Group on the Statement of Uncertainties 
upon which this Guide rests.  For further discussion, see references [1, 2, 11, 12]. 

 

E.1 “Safe,” “random,” and “systematic” 
E.1.1 This Guide presents a widely applicable method for evaluating and expressing 

uncertainty in measurement.  It provides a realistic rather than a “safe” value of 
uncertainty based on the concept that there is no inherent difference between an 
uncertainty component arising from a random effect and one arising from a 
correction for a systematic effect (see 3.2.2 and 3.2.3).  The method stands, 
therefore, in contrast to certain older methods that have the following two ideas 
in common. 

E.1.2 The first idea is that the uncertainty reported should be “safe” or 
“conservative,” meaning that it must never err on the side of being too small.  
In fact, because the evaluation of the uncertainty of a measurement result is 
problematic, it was often made deliberately large. 

E.1.3 The second idea is that the influences that give rise to uncertainty were always 
recognizable as either “random” or “systematic” with the two being of different 
natures; the uncertainties associated with each were to be combined in their 
own way and were to be reported separately (or when a single number was 
required, combined in some specified way).  In fact, the method of combining 
uncertainties was often designed to satisfy the safety requirement. 

 

E.2 Justification for realistic uncertainty evaluations 
E.2.1 When the value of a measurand is reported, the best estimate of its value and 

the best evaluation of the uncertainty of that estimate must be given, for if the 
uncertainty is to err, it is not normally possible to decide in which direction it 
should err “safety.”  An understatement of uncertainties might cause too much 
trust to be placed in the values reported, with sometimes embarrassing or even 
disastrous consequences.  A deliberate overstatement of uncertainties could also 
have undesirable repercussions.  It could cause users of measuring equipment to 
purchase instruments that are more expensive than they need, or it could cause 
costly products to be discarded unnecessarily or the services of a calibration 
laboratory to be rejected. 
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E.2.2 That is not to say that those using a measurement result could not apply their 
own multiplicative factor to its stated uncertainty in order to obtain an expanded 
uncertainty that defines an interval having a specified level of confidence and 
that satisfies their own needs, nor in certain circumstances that institutions 
providing measurement results could not routinely apply a factor that provides a 
similar expanded uncertainty that meets the needs of a particular class of users 
of their results.  However, such factors (always to be stated) must be applied to 
the uncertainty as determined by a realistic method, and only after the 
uncertainty has been so determined, so that the interval defined by the expanded 
uncertainty has the level of confidence required and the operation may be easily 
reversed. 

E.2.3 Those engaged in measurement often must incorporate in their analyses the 
results of measurements made by others, with each of these other results 
possessing an uncertainty of its own.  In evaluating the uncertainty of their own 
measurement result they need to have a best value, not a “safe” value, of the 
uncertainty of each of the results incorporated from elsewhere.  Additionally, 
there must be a logical and simple way in which these imported uncertainties 
can be combined with the uncertainties of their own observations to give the 
uncertainty of their own result.  Recommendation INC-1 (1980) provides such a 
way. 

 

E.3 Justification for treating all uncertainty components identically 
 The focus of the discussion of this subclause is a simple example that illustrates 

how this Guide treats uncertainty components arising from random effects and 
from corrections for systematic effects in exactly the same way in the 
evaluation of the uncertainty of the result of a measurement.  It thus exemplifies 
the viewpoint adopted in this Guide and cited in E.1.1, namely, that all 
components of uncertainty are of the same nature and are to be treated 
identically.  The starting point of the discussion is a simplified derivation of the 
mathematical expression for the propagation of standard deviations, termed in 
this Guide the law of propagation of uncertainty. 

E.3.1 Let the output quantity z = f(w1, w2, . . . wN) depend on N input quantities w1,
w2, . . . wN, where each wi is described by an appropriate probability 
distribution.  Expansion of f about the expectations of the wi, E(wi) ≡ µi, in a 
first-order Taylor series yields for small deviations of z about µz in terms of 
small deviations of wi about µi.

z - µz = ∂
∂

µ
f

w
w

i

N

i
i i( )−

=
∑

1
. . . (E.1) 

 where all higher-order terms are assumed to be negligible and µz = f(µ1, µ2, . . .
µN).  The square of the deviation z = µz is given by 

 (z - µz)2 = ∂
∂

µ
f

w
w

i

N

i
i i

=
∑ −











1

2

( )  . . . (E.2a) 



SAUDI STANDARD SASO…./2006

٦٤

 which may be written as 
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The expectation of the squared deviation (z - µz)2 is is the variance of z, that is, 
E[(z - µz)2] = σ z

2 , and thus equation (E.2b) leads to 
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In this expression, = E[(z - µz)2] is the variance of wi and ρij = v(wi, wj)/(σ i
2

σ j
2 )½ is the correlation coefficient of wi and wj, where v(wi, wj) = E(wi - µi) (wj -

µi)] is the covariance of wi and wj.
NOTES 

1 σ z
2 and σ i

2 are, respectively, the central moments of order 2 (see C.2.13 and C.2.22) of 
the probability distributions of z and wi. A probability distribution may be completely 
characterized by its expectation, variance, and higher-order central moments. 

2 Equation (13) in 5.2.2 [together with equation (15)], which is used to calculate combined 
standard uncertainty, is identical to equation (E.3) except that equation (13) is expressed 
in terms of estimates of the variances, standard deviations, and correlation coefficients. 

E.3.2 In the traditional terminology, equation (E.3) is often called the “general law of 
error propagation,” an appellation that is better applied to an expression of the 
form ∆z = i=

N
1∑ (∂f/∂wi) ∆wi, where ∆z is the change in z due to (small) changes 

∆wi in the wi [see equation (E.8)].  In fact, it is appropriate to call equation (E.3) 
the law of propagation of uncertainty as is done in this Guide because it shows 
how the uncertainties of the input quantities wi, taken equal to the standard 
deviations of the probability distributions of the wi, combine to give the 
uncertainty of the output quantity z if that uncertainty is taken equal to the 
standard deviation of the probability distribution of z.

E.3.3 Equation (E.3) also applies to the propagation of multiples of standard 
deviations, for if each standard deviation σi is replaced by a multiple kσi, with 
the same k for each σi, the standard deviation of the output quantity z is 
replaced by kσi. However, it does not apply to the propagation of confidence 
intervals.  If each σi is replaced with a quantity δi that that defines an interval 
corresponding to a given level of confidence p, the resulting quantity for z, δi,
will not define an interval corresponding to the same value of p unless all of the  
wi are described by normal distributions.  No such assumptions regarding the 
normality of the probability distributions of the quantities wi are implied in 

. . . (E.2ab)

. . . (E.3)
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equation (E.3).  More specifically, if an equation (10) in 5.1.2 each standard 
uncertainty u(xi) is evaluated from independent repeated observations and 
multiplied by the t-factor appropriate for its degrees of freedom for a particular 
value of p (say p = 95 percent), the uncertainty of the estimate y will not define 
an interval corresponding to that value of p (see G.3 and G.4). 

 NOTE – The requirement of normality when propagating confidence intervals using equation 
(E.3) may be one of the reasons for the historic separation of the components of uncertainty 
derived from repeated observations, which were assumed to be normally distributed, from those 
that were evaluated simply as upper and lower bounds. 

E.3.4 Consider the following example: z depends on only one input quantity w, z =
f(w), where w is estimated by averaging n values wk of w; when n values are 
obtained from n independent repeated observations qk of a random variable q;
and wk and qk are related by 

 wk = α + βqk . . . (E.4) 

 Here α is a constant “systematic” offset or shift common to each observation, 
and β is a common scale factor.  The offset and the scale factor, although fixed 
during the course of the observations, are assumed to be characterized by a
priori probability distributions, with α and β the best estimates of the 
expectations of these distributions. 

 The best estimate of w is the arithmetic mean or average w obtained from 

 w = 1
n

w
k
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=
∑
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= 1

n
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1
. . . (E.5) 

 The quantity z is then estimated by f( w ) = f(α, β, q1, q2, . . . qn) and the 
estimate u2(z) of its variance σ2(z) is obtained from equation (E.3).  If for 
simplicity it is assumed that z = w so that the best estimate of z is z = f( w ) = w ,
then the estimate u2(z) can be readily found.  Noting from equation (E.5) that 

 ∂
∂α

f = 1, ∂
∂β
f = 1

n
q

k

n
k

=
∑

1
q , and  ∂

∂
f

q k
= β

n
,

denoting the estimated variances of α and β by u2(α) and u2(β), respectively, 
and assuming that the individual observations are uncorrected, one finds from 
equation (E.3). 

 u2(z) = u2(α) + q u2 2 ( )β + β2
2s q

n
( )k . . . (E.6) 

 where s2(qk) is the experimental variance of the observations qk calculated 

according to equation (4) in 4.2.2, and s2(qk)/n = s2(q) is the experimental 

variance of the mean q [equation (5) in 4.2.3]. 
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E.3.5 In the traditional terminology, the third term on the right-hand side of equation 
(E.6) is called a “random” contribution to the estimated variance u2(z) because 
it normally decreases as the number of observations n increases, while the first 
two terms are called “systematic” contributions because they do not depend on 
n.

Of more significance, in some traditional treatments of measurement 
uncertainty, equation (E.6) is questioned because no distinction is made 
between uncertainties arising from systematic effects and those arising from 
random effects.  In particular, combining variances obtained from a priori 
probability distributions is deprecated because the concept of probability is 
considered to be applicable only to events that can be repeated a large number 
of times under essentially the same conditions, with the probability p of an 
event (0 ≤ p ≤ 1) indicating the relative frequency with which the event will 
occur. 

 In contrast to this frequency-based point of view of probability, an equally valid 
viewpoint is that probability is a measure of the degree of belief that an event 
will occur [13, 14].  For example, suppose one has a chance of winning a small 
sum of money D and one is a rational bettor.  One’s degree of belief in event A
occurring is p = 0,5 if one is indifferent to these two betting choices: (1) 
receiving D if event A does not occurs but nothing if it does occur; (2) receiving 
D if event A does not occur but nothing if it does occur.  Recommendation INC-
1 (1980) upon which this Guide rests implicitly adopts such a viewpoint of 
probability since it views expressions such as equation (E.6) as the appropriate 
way to calculate the combined standard uncertainty of a result of a 
measurement. 

E.3.6 There are three distinct advantages to adopting an interpretation of probability 
based on degree of belief, the standard deviation (standard uncertainty, and the 
law of propagation of uncertainty [equation (E.3)] as the basis for evaluating 
and expressing uncertainty in measurement, as has been done in this Guide: 

a) the law of propagation of uncertainty allows the combined standard 
uncertainty of one result to be readily incorporated in the evaluation of the 
combined standard uncertainty of another result in which the first is used; 

b) the combined standard uncertainty can serve as the basis for calculating 
intervals that correspond in a realistic way to their required levels of 
confidence; and 

c) it is unnecessary to classify components as “random” or “systematic” (or 
in any other manner) when evaluating uncertainty because all components 
of uncertainty are treated in the same way. 

 Benefit c) is highly advantageous because such categorization is frequently a 
source of confusion; an uncertainty component is not either “random” or 
“systematic.”  Its nature is conditioned by the use made of the corresponding 
quantity, or more formally, by the context in which the quantity appears in the 
mathematical model that describes the measurement.  Thus, when its 
corresponding quantity is used in a different context, a “random” component 
may become a “systematic” component, and vice versa. 
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E.3.7 For the reason given in c) above, Recommendation INC-1 (1980) does not 
classify components of uncertainty as either “random” or “systematic.”  In fact, 
as far as the calculation of the combined standard uncertainty of a measurement 
result is concerned, there is no need to classify uncertainty components and thus 
no real need for any classificational scheme.  Nonetheless, since convenient 
labels can sometimes be helpful in the communication and discussion of ideas, 
Recommendation INC-1 (1980) does provide a scheme for classifying the two 
distinct methods by which uncertainty components may be evaluated, “A” and 
“B” (see 0.7, 2.3.2, and 2.3.3). 

 Classifying the methods used to evaluate uncertainty components avoids the 
principal problem associated with classifying the components themselves, 
namely, the dependence of the classification of a component on how the 
corresponding quantity is used.  However, classifying the methods rather than 
the components does not preclude gathering the individual components 
evaluated by the two methods into specific groups for a particular purpose in a 
given measurement, for example, when comparing the experimentally observed 
and theoretically predicted variability of the output values of a complex 
measurement system (see. 3.4.3). 

 

E.4 Standard deviations as measures of uncertainty 
E.4.1 Equation (E.3) requires that no matter how the uncertainty of the estimate of an 

input quantity is obtained, it must be evaluated as a standard uncertainty, that is, 
as an estimated standard deviation.  If some “safe” alternative is evaluated 
instead, it cannot be used in equation (E.3).  In particular, if the “maximum 
error bound” (the largest conceivable deviation from the putative best estimate) 
is used in equation (E.3), the resulting uncertainty will have an ill-defined 
meaning and will be unusable by anyone wishing to incorporate it into 
subsequent calculations of the uncertainties of other quantities (see E.3.3). 

E.4.2 When the standard uncertainty of an input quantity cannot be evaluated by an 
analysis of the results of an adequate number of repeated observations, a 
probability distribution must be adopted based on knowledge that is much less 
extensive than might be desirable.  That does not, however, make the 
distribution invalid or unreal; like all probability distributions it is an expression 
of what knowledge exists. 

E.4.3 Evaluations based on repeated observations are not necessarily superior to those 

obtained by other means.  Consider s(q), the experimental standard deviation 
of the mean of n independent observations qk of a normally distributed random 

variable q [see equation (5) in 4.2.3].  The quantity s(q) is a statistic (see 

C.2.23) that estimates σ(q), the standard deviation of the probability 

distribution of q , that is, the standard deviation of the distribution of the values 

of q that would be obtained if the measurement were repeated an infinite 

number of times.  The variance σ 2(q) of s(q) is given, approximately, by 
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 σ 2[s(q)]   =  σ 2(q)/2 v . . . (E.7) 

 where v = n – 1 is the degrees of freedom of s(q) (see G.3.3).  Thus the relative 

standard deviation of s(q), which is given by the ratio σ[s(q)]/σ(q) and which 

can be taken as a measure of the relative uncertainty of s(q), is approximately 

[2(n – 1)]-½. This “uncertainty of the uncertainty” of q , which arises from the 
purely statistical reason of limited sampling, can be surprisingly large; for n =
10 observations it is 24 percent.  This and other values are given in table E.1, 
which shows that the standard deviation of a statistically estimated standard 
deviation is not negligible for practical values of n. One may therefore 
conclude that Type A evaluations of standard uncertainty are not necessarily 
more reliable than Type B evaluations, and that in many practical measurement 
situations where the number of observations is limited, the components 
obtained from Type B evaluations may be better known than the components 
obtained from Type A evaluations. 

 Table E.1 – σ[s(q)]/σ(q) the standard deviation of the experimental standard 

deviation of the mean q of n independent observations of a normally 
distributed random variable q, relative to the standard deviation of that mean(a) 

Number of observations 

n
σ[s(q)]/σ(q)

(percent) 

2 76

3 52

4 42

5 36

10 24 

20 16 

30 13 

50 10 
(a) The values given have been calculated from the exact expression for σ[s( q )]/σ( q ), not the 

approximate expression [2(n – 1)] -½.

E.4.4 It has been argued that, whereas the uncertainties associated with the 
application of a particular method of measurement are statistical parameters 
characterizing random variables, there are instances of a “truly systematic 
effect” whose uncertainty must be treated differently.  An example is an offset 
having an unknown fixed value that is the same for every determination by the 
method due to a possible imperfection in the very principle of the method itself 
or one of its underlying assumptions.  But if the possibility of such an offset is 
acknowledged to exist and its magnitude is believed to be possibly significant, 
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then it can be described by a probability distribution, however simply 
constructed, based on the knowledge that led to the conclusion that it could 
exist and be significant.  Thus, if one considers probability to be a measure of 
the degree of belief than an event will occur, the contribution of such a 
systematic effect can be included in the combined standard uncertainty of a 
measurement result by evaluating it as a standard uncertainty of an a priori 
probability distribution and treating it in the same manner as any other standard 
uncertainty of an input quantity. 

 EXAMPLE – The specification of a particular measurement procedure requires that a certain 
input quantity be calculated from a specific power-series expansion whose higher-order terms 
are inexactly known.  The systematic effect due to not being able to treat these terms exactly 
leads to an unknown fixed offset that cannot be experimentally sampled by repetitions of the 
procedure.  Thus the uncertainty associated with the effect cannot be evaluated and included in 
the uncertainty of the final measurement result if a frequency-based interpretation of probability 
is strictly followed.  However, interpreting probability on the basis of degree of belief allows 
the uncertainty characterizing the effect to be evaluated from an a priori probability distribution 
(derived from the available knowledge concerning the inexactly known terms) and to be 
included in the calculation of the combined standard uncertainty of the measurement result like 
any other uncertainty. 

 

E.5 A comparison of two views of uncertainty 
E.5.1 The focus of this Guide is on the measurement result and its evaluated 

uncertainty rather than on the unknowable quantities “true” value and error (see 
annex D).  By taking the operational views that the result of a measurement is 
simply the value attributed to the measurand and that the uncertainty of that 
result is a measure of the dispersion of the values that could reasonably be 
attributed to the measurand, this Guide in effect uncouples the often confusing 
connection between uncertainty and the unknowable quantities “true” value and 
error. 

E.5.2 This connection may be understood by interpreting the derivation of equation 
(E.3), the law of propagation of uncertainty, from the standpoint of “true” value 
and error.  In this case µi is viewed as the unknown, unique “true” value of 
inplut quantity wi and each wi is assumed to be related to its “true” value µi by 
wi = µi + εi, where εi is the error in wi. The expectation of the probability 
distribution of each εi is assumed to be zero ( E(εi) = 0, with variance E( ε i

2 ) =
σ i

2 . Equation (E.1) becomes then 

 εz =
i

N

=
∑
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∂
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ε
f

w i
i . . . (E.8) 

 where εz = z - µz is the error in z and µz is the “true” value of z. If one then 
takes the expectation of the square of εz, one obtains an equation identical in 
form to equation (E.3) but in which σ z

2 = E( ε z
2 ) is the variance of εz pij = v(εi,

εj)/( σ σi j
2 2 )½ is the correlation coefficient of  εi and εj, where v(εi, εj) = E(εi, εj)

is the covariance of εi and εj. The variances and correlation coefficients are thus 
associated with the errors of the input quantities rather than with the input 
quantities themselves. 
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 NOTE – It is assumed that probability is viewed as a measure of the degree of belief that an 
event will occur, implying that a systematic error may be treated in the same way as a random 
error and that εi represents either kind. 

E.5.3 In practice, the difference in point of view does not lead to a difference in the 
numerical value of the measurement result or of the uncertainty assigned to that 
result. 

 First, in both cases, the best available estimates of the input quantities wi are 
used to obtain the best estimate of z from the function f; it makes no difference 
in the calculations if the best estimates are viewed as the values most likely to 
be attributed to the quantities in question or the best estimates of their “true” 
values. 

 Second, because εi = wi - µi, and because µi represent unique, fixed values and 
hence have no uncertainty, the variances and standard deviations of the εi and 
wi are identical.  This means that in both cases, the standard uncertainties used 
as the estimates of the standard deviations σi to obtain the combined standard 
uncertainty of the measurement result are identical and will yield the same 
numerical value for that uncertainty.  Again, it makes no difference in the 
calculations if a standard uncertainty is viewed as a measure of the dispersion 
of the probability distribution of an input quantity or as a measure of the 
dispersion of the probability distribution of the error of that quantity. 

 NOTE – If the assumption of the note of E.5.2 had not been made, then the discussion of this 
subclause would not apply unless all of the estimates of the input quantities and the 
uncertainties of those estimates were obtained from the statistical analysis of repeated 
observations, that is, from Type A evaluations. 

E.5.4 While the approach based on “true” value and error yields the same numerical 
results as the approach taken in this Guide (provided that the assumption of the 
note of E.5.2 is made), this Guide’s concept of uncertainty eliminates the 
confusion between error and uncertainty (see annex D).  Indeed, this Guide’s 
operational approach, wherein the focus is on the observed (or estimated) value 
of a quantity and the observed (or estimated) variability of that value, makes 
any mention of error entirely unnecessary. 
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Annex F 
 

Practical guidance on evaluating uncertainty components 
 

This annex gives additional suggestions for evaluating uncertainty components, mainly of 
a practical nature, that are intended to complement the suggestions already given in clause 
4. 

 

F.1 Components evaluated from repeated observations: Type A evaluation of 
standard uncertainty 

F.1.1 Randomness and repeated observations 

F.1.1.1 Uncertainties determined from repeated observations are often contrasted with 
those evaluated by other means as being “objective,” “statistically rigorous,” 
etc.  That incorrectly implies that they can be evaluated merely by the 
application of statistical formulae to the observations and that their evaluation 
does not require the application of some judgement. 

F.1.1.2 It must first be asked, “To what extent are the repeated observations completely 
independent repetitions of the measurement procedure?”  If all of the 
observations are on a single sample, and if sampling is part of the measurement 
procedure because the measurand is the property of a material (as opposed to 
the property of a given specimen of the material), then the observations have 
not been independently repeated; an evaluation of a component of variance 
arising from possible differences among samples must be added to the observed 
variance of the repeated observations made on the single sample. 

 If zeroing an instrument is part of the measurement procedure, the instrument 
ought to be rezeroed as part of every repetition, even if there is negligible drift 
during the period in which observations are made, for there is potentially a 
statistically determinable uncertainty attributable to zeroing. 

 Similarly, if a barometer has to be read, it should in principle be read for each 
repetition of the measurement (preferably after disturbing it and allowing it to 
return to equilibrium), for there may be a variable both in indication and in 
reading, even if the barometric pressure is constant. 

F.1.1.3 Second, it must be asked whether all of the influences that are assumed to be 
random really are random.  Are the means and variances of their distributions 
constant, or is there perhaps a drift in the value of an unmeasured influence 
quantity during the period of repeated observations?  If there is a sufficient 
observations, the arithmetic means of the results of the first and second halves 
of the period and their experimental standard deviations may be calculated and 
the two means compared with each other in order to judge whether the 
difference between them is statistically significant and thus if there is an effect 
varying with time. 
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F.1.1.4 If the values of “common services” in the laboratory (electric supply voltage 
and frequency, water pressure and temperature, nitrogen pressure, etc.) are 
influence quantities, there is normally a strongly nonrandom element in their 
variations that cannot be overlooked. 

F.1.1.5 If the least significant figure of a digital indication varies continually during an 
observation due to “noise,” it is sometimes difficult not to select unknowingly 
personally preferred values of that digit.  It is better to arrange some means of 
freezing the indication at an arbitrary instant and recording the frozen result. 

F.1.2 Correlations 
 Much of the discussion in this subclause is also applicable to Type B 

evaluations of standard uncertainty. 

F.1.2.1 The covariance associated with the estimates of two input quantities Xi and Xj
may be taken to be zero or treated as insignificant if 

a) Xi and Xj are uncorrelated (the random variables, not the physical 
quantities that are assumed to be invariants – see 4.1.1, note 1), for 
example, because they have been repeatedly but not simultaneously 
measured in different independent experiments or because they represent 
resultant quantities of different evaluations that have been made 
independently, or if 

b) either of the quantities Xi or Xj can be treated as a constant, or if 

c) there is insufficient information to evaluate the covariance associated with 
the estimates of Xi and Xj.

NOTES 

1 On the other hand, in certain cases, such as the reference-resistance example of note 1 to 
5.2.2, it is apparent that the input quantities are fully correlated and that the standard 
uncertainties of their estimates combine linearly. 

2 Different experiments may not be independent if, for example, the same instrument is used 
in each (see F.1.2.3). 

F.1.2.2 Whether or not two repeatedly and simultaneously observed input quantities are 
correlated may be determined by means of equation (17) in 5.2.3.  For example, 
if the frequency of an oscillator uncompensated or poorly compensated for 
temperature is an input quantity, if ambient temperature is also an input 
quantity, and if they are observed simultaneously, there may be a significant 
correlation revealed by the calculated covariance of the frequency of the 
oscillator and the ambient temperature. 

F.1.2.3 In practice, input quantities are often correlated because the same physical 
measurement standard, measuring instrument, reference datum, or even 
measurement method having a significant uncertainty is used in the estimation 
of their values.  Without loss of generality, suppose two input quantities Xi and 
Xj estimated by x1 and x2 depend on a set of uncorrelated variables Q1, Q2, . . . .
Qt. Thus X1 = F(Q1, Q2, . . . . Qt) and X2 = F(Q1, Q2, . . . . Qt), although some of 
these variables may actually appear only in one function and not in the other. If 
u2(qt) is the estimated variance associated with the estimate qt of Qt, then the 
estimated variance associated with x1 is, from equation (10) in 5.1.2, 
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 with a similar expression for u2(x2).  The estimated covariance associated with 
x1 and x2 is given by 
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u2(qt) . . . (F.2) 

 Because only those terms for which ∂F/∂qt ≠ 0 and ∂G/∂qt ≠ 0 for a given l
contribute to the sum, the covariance is zero if no variable is common to both F
and G.

The estimated correlation coefficient r(x1, x2) associated with the two estimates 
x1 and x2 is determined from u(x1, x2) [equation (F.2)] and equation (14) in 
5.2.2, with u(x1) calculated from equation (F.1) and u(x2) from a similar 
expression.  [See also equation (H.9) in H.2.3.]  It is also possible for the 
estimated covariance associated with two input estimates to have both a 
statistical component [see equation (17) in 5.2.3] and a component arising as 
discussed in this subclause.  

 EXAMPLES 

1 A standard resistor RS is used in the same measurement to determine both a current l and a 
temperature t.  The current is determined by measuring, with a digital voltmeter, the 
potential difference across the terminals of the standard: the temperature is determined by 
measuring, with a resistance bridge and the standard, the resistance Rt(t) of a calibrated 
resistive temperature sensor whose temperature-resistance relation in the range 15oC ≤ t ≤

30oC is t = aR t
2 - t0, where a and t0 are known constant.  Thus the current is determined 

through the relation l = VS/RS and the temperature through the relation t = aβ2(t) RS
2 - t0,

where β(t) is the measured ratio Rt(t)/RS provided by the bridge. 

 Since only the quantity RS is common to the expression for l and t, equation (F.2) yields for 
the covariance of l and t.

u(l, t) = ∂
∂

l
RS

∂
∂

t
R

u R
S

S
2 ( )  

 = −










V
R

S

S
(2aβ2(t) RS) u2(RS)

= -
2 0

2
2l t t

R
u R

( )
( )

+

S
S

(For simplicity of notation, in this example the same symbol is used for both the input 
quantity and its estimate.) 

 To obtain the numerical value of the covariance, one substitutes into this expression the 
numerical values of the measured quantities l and t, and the values of RS and u(RS) given in 
the standard resistor’s calibration certificate.  The unit of u(l, t) is clearly A·oC since the 
dimension of the relative variance [u(RS)/RS]2 is one (that is, the latter is a so-called 
dimensionless quantity). 
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 Further, let a quantity P be related to the input quantities l and t by P = C0/l2/T0 + t), where 
C0 and T0 are known constants with negligible uncertainties [u2(C0) = 0, u2(T0) = 0].  
Equation (13) in 5.2.2 then yields for the variance of P in terms of the variances of l and t
and their covariance 

 u P
P

2

2
( ) = 4

2

2
u l

l
( ) - 4

0

u l t
l T t

( , )
( )+

+ u t
T t

2

0
2

( )
( )+

The variances u2(l) and u2(t) are obtained by the application of equation (10) of 5.1.2 to the 
relation l = VS/RS and t = aβ2(t) RS

2 - t0.  The results are 

u2(l)/t2 = u2(VS)/V S
2 + u2(RS)/ RS

2

u2(t) = 4(t + t0)2 u2(β)/β2 + 4(t + t0)2 u2(RS)/ RS
2

where for simplicity it is assumed that the uncertainties of the constants t0 and a are also 
negligible.  These expressions can be readily evaluated since u2(VS) and u2(β) may be 
determined, respectively, from the repeated readings of the voltmeter and of the resistance 
bridge.  Of course, any uncertainties inherent in the instruments themselves and in the 
measurement procedures employed must also be taken into account when u2(VS) and u2(β)
are determined. 

2 In the example of note 1 to 5.2.2, let the calibration of each resistor be represented by Ri =
αiRS, with u(αi) the standard uncertainty of the measured ratio αi as obtained from repeated 
observations.  Further, let αi = 1 for each resistor, and let u(αi) be essentially the same for 
each calibration so that u(αi) = u(α).  Then equations (F.1) and (F.2) yield u2(Ri) =
RS

2 u2(α) + u2(RS) and u(Ri, Rj) = u2(RS).  This implies through equation (14) in 5.2.2 that 
the correlation coefficient of any two resistors (i ≠ j) is 

 r(Ri, Rj) ≡ rij = 1
2 1

+
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





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−
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u R R
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S S
 

Since u(RS)/RS) = 10-4, if u(α) = 100 x 10-6, rij = 0,5; if u(α) = 10 x 10-6, rij = 0,000; and if 
u(α) = 1 x 10-6, rij = 1,000.  Thus as u(α)→ 0, rij → 1 and u(Ri)→ u(RS). 

 NOTE – In general, in comparison calibrations such as this example, the estimated values of 
the calibrated items are correlated, with the degree of correlation depending upon the ratio of 
the uncertainty of the comparison to the uncertainty of the reference standard.  When, as often 
occurs in practice, the uncertainty of the comparison is negligible with respect to the 
uncertainty of the standard, the correlation coefficients are equal to +1 and the uncertainty of 
each calibrated item is the same as that of the standard. 

F.1.2.4 The need to introduce the covariance u(xi, xj) can be bypassed if the original set 
of input quantities X1, X2, . . . . XN upon which the measurand Y depends [see 
equation (1) in 4.1] is redefined in such a way as to include as additional 
independent input quantities those quantities Qt that are common to two or 
more of the original Xi. (It may be necessary to perform additional 
measurements to establish fully the relationship between Qt and the affected Xi.)  
Nonetheless, in some situations it may be more convenient to retain covariances 
rather than to increase the number of input quantities.  A similar process can be 
carried out on the observed covariances of simultaneous repeated observations 
[see equation (17) in 5.2.3], but the identification of the appropriate additional 
input quantities is often ad hoc and nonphysical. 
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 EXAMPLE – If, in example 1 of the previous subclause, the expression for l and t in terms of 
RS are introduced into the expression for P, the result is 

 P =
C V

R T t R t
0

2

2
0

2 2
0

S

S Sa[ ( ) ]+ −β
 

And the correlation between l and t is avoided at the expense of replacing the input quantities l
and t with the quantities VS, RS, and β. Since these quantities are uncorrelated, the variance of P
can be obtained from equation (10) in 5.1.2. 

F.2 Components evaluated by other means:  Type B evaluation of standard 
uncertainty  

F.2.1 The need for Type B evaluations 
 If a measurement laboratory had limitless time and resources, it could conduct 

an exhaustive statistical investigation of every conceivable cause of uncertainty, 
for example, by using many different makes and kinds of instruments, different 
methods of measurement, different applications of the method, and different 
approximations in its theoretical models of the measurement.  The uncertainties 
associated with all of these causes could then be evaluated by the statistical 
analysis of series of observations and the uncertainty of each cause would be 
characterized by a statistically evaluated standard deviation.  In other words, all 
of the uncertainty components would be obtained from Type A evaluations.  
Since such an investigation is not an economic practicality, many uncertainty 
components must be evaluated by whatever other means is practical. 

F.2.2 Mathematically determine distributions 
F.2.2.1 The resolution of a digital indication 
 One source of uncertainty of a digital instrument is the resolution of its 

indicating device.  For example, even if the repeated indications were all 
identical, the uncertainty of the measurement attributable to repeatability would 
not be zero, for there is a range of input signals to the instrument spanning a 
known interval that would give the same indication.  If the resolution of the 
indicating device is δx, the value of the stimulus that produces a given 
indication X can lie with equal probability anywhere in the interval X - δx/2 to 
X + δx/2.  The stimulus is thus described by a rectangular probability 
distribution (see 4.3.7 and 4.4.5) of width δx with variance u2 = (δx)2/12, 
implying a standard uncertainty of u = 0,29δx for any indication. 

 Thus a weighing instrument with an indicating device whose smallest 
significant digit is l g has a variance due to the resolution of the device of u2 =
(l/12) g2 and a standard uncertainty of u = ( / )1 1 2 = 0,29 g. 

F.2.2.2 Hysteresis 
 Certain kinds of hysteresis can cause a similar kind of uncertainty.  The 

indication of an instrument may differ by a fixed and known amount according 
to whether successive readings are rising or falling.  The prudent operator takes 
note of the direction of successive readings and makes the appropriate 
correction.  But the direction of the hysteresis is not always observable:  there 
may be hidden oscillations within the instrument about an equilibrium point so 
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that the indication depends on the direction from which that point is finally 
approached.  If the range of possible readings from that cause is δx, the variance 
is again u2 = (δx)2/12, and the standard uncertainty due to hysteresis is u =
0,29δx.

F.2.2.3 Finite-precision arithmetic 
 The rounding or truncation of numbers arising in automated data reduction by 

computer can also be a source of uncertainty.  Consider, for example, a 
computer with a word length of 16 bits.  If, in the course of computation, a 
number having this word length is subtracted from another from which it differs 
only in the 16th bit, only one significant bit remains.  Such events can occur in 
the evaluation of “ill-conditioned” algorithms, and they can be difficult to 
predict.  One may obtain an empirical determination of the uncertainty by 
increasing the most important input quantity to the calculation (there is 
frequently one that is proportional to the magnitude of the output quantity) by 
small increments until the output quantity changes; the smallest change in the 
output  quantity that can be obtained by such means may be taken as a measure 
of the uncertainty; if it is δx, the variance is u2 = (δx)2/12 and u = 0,29δx.
NOTE – One may check the uncertainty evaluation by comparing the result of the computation 
carried out on the limited word-length machine with the result of the same computation carried 
out on a machine with a significantly larger word length. 

F.2.3 Imported input values 
F.2.3.1 An imported value for an input quantity is one that has not been estimated in 

the course of a given measurement but has been obtained elsewhere as the 
result of an independent evaluation.  Frequently such an imported value is 
accompanied by some kind of statement about its uncertainty.  For example, the 
uncertainty may be given as a standard deviation, a multiple of a standard 
deviation, or the half-width of an interval having a stated level of confidence.  
Alternatively, upper and lower bounds may be given, or no information may be 
provided about the uncertainty.  In the latter case those who use the value must 
employ their own knowledge about the likely magnitude of the uncertainty, 
given the nature of the quantity, the reliability of the source, the uncertainties 
obtained in practice for such quantities, etc. 

 NOTE – The discussion of the uncertainty of imported input quantities is included in this 
subclause on Type B evaluation of standard uncertainty for convenience; the uncertainty of 
such a quantity could be composed of components obtained from Type A evaluations or 
components obtained from both Type A and Type B evaluations.  Since it is unnecessary to 
distinguish between components evaluated by the two different methods in order to calculate a 
combined standard uncertainty, it is unnecessary to know the composition of the uncertainty of 
an imported quantity. 

F.2.3.2 Some calibration laboratories have adopted the practice of expressing 
“uncertainty” in the form of upper and lower limits that define an interval 
having a “minimum” level of confidence, for example, “at least” 95 percent.  
This may be viewed as an example of a so-called “safe” uncertainty (see E.1.2), 
and it cannot be converted to a standard uncertainty without a knowledge of 
how it was calculated.  If sufficient information is given it may be recalculated 
in accordance with the rules of this Guide; otherwise an independent 
assessment of the uncertainty must be made by whatever means are available. 
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F.2.3.3 Some uncertainties are given simply as maximum bounds within which all 
values of the quantity are said to lie.  It is a common practice to assume that all 
values within those bounds are equally probable (a rectangular probability 
distribution), but such a distribution should not be assumed if there is reason to 
expect that values within but close to the bounds are less likely than those 
nearer the centre of the bounds.  A rectangular distribution of half-width a has a 
variance of a2/3; a normal distribution for which a is the half-width of an 
interval having a level of confidence of 99,73 percent has a variance of a2/9.  It 
may be prudent to adopt a compromise between those values, for example, by 
assuming a triangular distribution for which the variance is a2/6 (see 4.3.9 and 
4.4.6). 

F.2.4 Measured input values 
F.2.4.1 Single observation, calibration instruments 
 If an input estimate has been obtained from a single observation with a 

particular instrument that has been calibrated against a standard of small 
uncertainty, the uncertainty of the estimate is mainly one of repeatability.  The 
variance of repeated measurements by the instrument may have been obtained 
on an earlier occasion, not necessarily at precisely the same value of the reading 
but near enough to be useful, and it may be possible to assume the variance to 
be applicable to the input value in question.  If no such information is available, 
an estimate must be made based on the nature of the measuring apparatus or 
instrument, the known variances of other instruments of similar construction, 
etc. 

F.2.4.2 Single observation, verified instruments 
 Not all measuring instruments are accompanied by a calibration certificate or a 

calibration curve.  Most instruments, however, are constructed to a written 
standard and verified, either by the manufacturer or by an independent 
authority, to conform to that standard.  Usually the standard contains 
metrological requirements, often in the form of “maximum permissible errors,” 
to which the instrument is required to conform.  The compliance of the 
instrument with these requirements is determined by comparison with a 
reference instrument whose maximum allowed uncertainty is usually specified 
in the standard.  This uncertainty is then a component of the uncertainty of the 
verified instrument. 

 If nothing is known about the characteristic error curve of the verified 
instrument it must be assumed that there is an equal probability that the error 
has any value within the permitted limits, that is, a rectangular probability 
distribution.  However, certain types of instruments have characteristic curves 
such that the errors are, for example, likely always to be positive in part of the 
measuring range and negative in other parts.  Sometimes such information can 
be deduced from a study of the written standard. 
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F.2.4.3 Controlled quantities 
 Measurements are frequently made under controlled reference conditions that 

are assumed to remain constant during the course of a series of measurements.  
For example, measurements may be performed on specimens in a stirred oil 
bath whose temperature is controlled by a thermostat.  The temperature of the 
bath may be measured at the time of each measurement on a specimen, but if 
the temperature of the bath is cycling, the instantaneous temperature of the 
specimen may not be the temperature indicated by the thermometer in the bath.  
The calculation of the temperature fluctuations of the specimen based on heat-
transfer theory, and of their variance, is beyond the scope of this Guide, but it 
must start from a known or assumed temperature cycle for the bath.  That cycle 
may be observed by a fine thermocouple and a temperature recorder, but failing 
that, an approximation of it may be deduced from a knowledge of the nature of 
the controls. 

F.2.4.4 Asymmetric distribution of possible values 
 There are occasions when all possible values of a quantity lie to one side of a 

single limiting value.  For example, when measuring the fixed vertical height h 
(the measurand) of a column of liquid in a manometer, the axis of the height-
measuring device may deviate from verticality by a small angle β. The distance 
l determined by the device will always be larger than h; no values less than ha 
are possible.  This is because h is equal to the projection lcosβ, implying l =
h/cosβ, and all values of cosβ are less than one; no values greater than one are 
possible.  This so-called “cosine error” can also occur in such a way that the 
projection h’cosβ of a measurand h’ is equal to the observed distance l, that is, l
= h’cosβ, and the observed distance is always less than the measurand. 

 If a new variable δ = 1 - cosβ is introduced, the two different situations are, 
assuming β ≈ 0 or δ << 1 as is usually the case in practice. 

 h = l (1 – δ) . . . (F.3a) 

 h’ = l (1 + δ) . . . (F.3b) 

 Here l , the best estimate of l, is the arithmetic mean or average of n 
independent repeated observations lk of l with estimated variance u2( l ) [see 
equations (3) and (5) in 4.2].  Thus it follows from equations (F.3a) and (F.3b) 
that to obtain an estimate of h or h’ requires an estimate of the correction factor 
δ, while to obtain the combined standard uncertainty of the estimate of h or h’
requires u2(δ), the estimated variance of δ. More specifically, application of 
equation (10) in 5.1.2 to equations (F.3a) and (F.3b) yields for u c

2 (h) and 
u c

2 (h’) (- and + signs, respectively). 

 u c
2 = (1 ± δ)2 u2( l ) + l 2 u2(δ) . . . (F.4a) 

 = u2( l ) + l 2 u2(δ) . . . (F.4b) 
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 To obtain estimates of the expected value of δ and the variance of δ, assume 
that the axis of the device used to measure the height of the column of liquid in 
the manometer is constrained to be fixed in a vertical plane and that the 
distribution of the values of the angle of inclination β about its expected value 
of zero is a normal distribution with variance σ2. Although β can have both 
positive and negative values, δ = 1 cosβ is positive for all values of β. If the 
misalignment of the axis of the device is assumed to be unconstrained, the 
orientation of the axis can vary over a solid angle since it is capable of 
misalignment in azimuth as well, but β is then always a positive angle. 

 In the constraint or one-dimensional case, the probability element p(β)dβ
(C.2.5, note) is proportional to [exp(-β2/2σ2)]dβ; in the unconstrained or two-
dimensional case, the probability element is proportional to [exp(-β2/2σ2)]dβ.
The probability density functions p(δ) in the two cases are the expressions 
required to determine the expectation and variance of δ for use in equations 
(F.3) and F.4).  They may readily be obtained from these probability elements 
because the angle β may be assumed small, and hence δ = 1 -cosβ and sinβ may 
be expanded to lowest order in β. This yields δ = β2/2, sinβ ≈ β = 2δ , and dβ
= dδ 2δ . The probability density functions are then 

 p(δ) = 1 2

σ π δ
δ σexp( / )− . . . (F.3a) 

 in one dimension 

 p(δ) = 1
2

2

σ
δ σexp( / )− . . . (F.3a) 

 in two dimension 

 where 

 p(δ) dδ = 1

Equations (F.5.a) and (F.5b), which show that the most probable value of the 
correction δ in both cases is zero, give in the one-dimensional case E(δ) = σ2/2 
and var(δ) = σ4/2 for the expectation and the variance of δ; and in the two-
dimensional case E(δ) = σ4 and var(δ) = σ4. Equations (F.3a), (F.3b), and 
(F.4b) become then 

 h = l [(1 – (d/2)u2(β)]              . . . (F.6a) 

 h = l [(1 – (d/2)u2(β)]              . . . (F.6b) 

 u c
2 (h) = u c

2 (h’) = u2( l ) + (d/2) l 2 u4(β) . . . (F.6c) 

 where d  is the dimensionality (d = 1 or 2) and u(β) is the standard uncertainty 
of the angle β, taken to be the best estimate of the standard deviation σ of an 
assumed normal distribution and to be evaluated from all of the information 
available concerning the measurement (Type B evaluation).  This is an example 
of a case where the estimate of the value of a measurand depends on the 
uncertainty of an input quantity. 
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 Although equation (F.6a) to (F.6c) are specific to the normal distribution, the 
analysis can be carried out assuming other distributions for β. For example, if 
one assumes for β a symmetric rectangular distribution with upper and lower 
bounds of +β0 and -β0 in the one-dimensional case and +β0 and zero in the two-
dimensional case, E(δ) = β0

2 /6 and var(δ) = β0
4 /45 in one dimension; and E(δ)

= β0
2 /4 and var(δ) = β0

4 /48 in two dimension 

 NOTE – This is a situation where the expansion of the function Y = f(X1, X2, . . . . XN) in a first-
order Taylor series to obtain u c

2 (y), equation (10) in 5.1.2, is inadequate because of the 

nonlinearity of f: cosβ ≠ cosβ (see note 2 to 5.1.2, and H.2.4).  Although the analysis can be 
carried out entirely in terms of β, introducing the variable δ simplifies the problem. 

 
EXAMPLE – If a rectangular distribution of lower bound zero and upper bound C0 is assumed 
for the excess z, then the expected value of the excess is C0/2 with associated variance /12.  If 
the probability density function of the excess is taken as that of a normal distribution with 0 ≤ z
< ∞, that is, p(z) = exp(-z2/2σ2), then the expected value is   with variance σ2(1 – 2/π). 

F.2.4.5 Uncertainty when corrections from a calibration curve are not applied 
 The note to 6.3.1 discusses the case where a known correction b for a 

significant systematic effect is not applied to the reported result of a 
measurement but instead is taken into account by enlarging the “uncertainty” 
assigned to the result.  An example is replacement of an expanded uncertainty 
U with U + b, where U is an expanded uncertainty obtained under the 
assumption b = 0. This practice is sometimes followed in situations where all 
of the following conditions apply; the measurand Y is defined over a range of 
values of a parameter t, as in the case of a calibration curve for a temperature 
sensor; U and b also depend on t; and only a single value of “uncertainty” is to 
be given for all estimates y(t) of the measurand over the range of possible 
values of t.  In such situations the result of the measurement is often reported as 
Y(t) = y(t) ± [Umax + bmax], where the subscript “max” indicates that the 
maximum value of U and the maximum value of the known correction b over 
the range of values of t are used. 

 Although this Guide recommends that corrections be applied to measurement 
results for known significant systematic effects, this may not always be feasible 
in such a situation because of the unacceptable expense that would be incurred 
in calculating and applying an individual correction, and in calculating and 
using an individual uncertainty, for each value of y(t). 

 A comparatively simple approach to this problem that is consistent with the 
principles of this Guide is as follows: 

 Compute a single mean correction b from 

 b = 1

2 1t t− t

t

1

2
∫ b(t) dt . . . (F.7a) 
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 where t1 and t2 define the range of interest of the parameter t, and take the best 
estimate of Y(t) to be y’(t) = y(t) + b , where y(t) is the best uncorrected estimate 
of Y(t).  The variance associated with the mean correction b over the range of 
interest is given by 

 u2(b ) = 1

2 1t t− t

t

1

2
∫ [b(t) - b ]2 dt  . . . (F.7b) 

 not taking into account the uncertainty of the actual determination of the 
correction b(t).  The mean variance of the correction b(t) due to its actual 
determination is given by  

 u2[b(t)] = 1

2 1t t− t

t

1

2
∫ u2[b(t)] dt . . . (F.7c) 

 where u2[b(t)] is the variance of the correction b(t).  Similarly, the mean 
variance of y(t) arising from all sources of uncertainty other than the correction 
b(t) is obtained from 

 u2[b(t)] = 1

2 1t t− t

t

1

2
∫ u2[y(t)] dt  . . . (F.7d) 

 where u2[y(t)] is the variance of y(t) due to all uncertainty sources other than 
b(t).  The single value of standard uncertainty to be used for all estimates y’(t) =
y(t) + b of the measurand Y(t) is then the positive square root of 

 u c
2 (y’) = u2[y(t)]  +  u2[b(t)] = u2(b )]  . . . (F.7e) 

 An expanded uncertainty U may be obtained by multiplying uc(y’) by an 
appropriate chosen coverage factor k, U = kuc(y’), yielding Y(t) = y’(t) ± U =
y(t) + b ± U. However, the use of the same average correction for all values of 
t rather than the correction appropriate for each value of t must be recognized 
and a clear statement given as to what U represents. 

F.2.5 Uncertainty of the method of measurement 
F.2.5.1 Perhaps the most difficult uncertainty component to evaluate is that associated 

with the method of measurement,, especially if the application of that method 
has been shown to give results with less variability than those of any other that 
is known.  But it is likely that there are other methods, some of them as yet 
unknown or in some way impractical, that would give systematically different 
results of apparently equal validity.  This implies an a priori probability 
distribution, not a distribution from which samples can be readily drawn and 
treated statistically.  Thus, even though the uncertainty of the method may be 
the dominant one, the only information often available for evaluating its 
standard uncertainty is one’s existing knowledge of the physical world.  (See 
also E.4.4.) 
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 NOTE – Determining the same measurand by different methods, either in the same laboratory 
or in different laboratories, or by the same method in different laboratories, can often provide 
valuable information about the uncertainty attributable to a particular method.  In general, the 
exchange of measurement standards or reference materials between laboratories for 
independent measurement is a useful way of assessing the reliability of evaluations of 
uncertainty and of identifying previously unrecognized systematic effects. 

F.2.6 Uncertainty of the sample 
F.2.6.1 Many measurements involve comparing an unknown object with a known 

standard having similar characteristics in order to calibrate the unknown.  
Examples include end gauges, certain thermometers, sets of masses, resistors, 
and high purity materials.  In most such cases, the measurement methods are 
not especially sensitive to, or adversely affected by, sample selection (that is, 
the particular unknown being calibrated), sample treatment, or the effects of 
various environmental influence quantities because the unknown and standard 
respond in generally the same (and often predictable) way to such variables. 

F.2.6.2 In some practical measurement situations, sampling and specimen treatment 
play a much larger role.  This is often the case for the chemical analysis of 
natural materials.  Unlike man-made materials, which may have proven 
homogeneity to a level beyond that required for the measurement, natural 
materials are often very inhomogeneous.  This inhomogeneity leads to two 
additional uncertainty components.  Evaluation of the first requires determining 
how adequately the same selected represents the parent material being analysed.  
Evaluation of the second requires determining the extent to which the 
secondary (unanalysed) constitutes influence the measurement and how 
adequately they are treated by the measurement method. 

F.2.6.3 In some cases caredful design of the experiment may make it possible to 
evaluate statistically the uncertainty due to the sample (see H.5 and H.5.3.2).  
Usually, however, especially when the effects of environmental influence 
quantities on the sample are significant, the skill and knowledge of the analyst 
derived from experience and all of the currently available information are 
required for evaluating the uncertainty. 
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Annex G 
 

Degrees of freedom and levels of confidence 
 

G.1 Introduction 
G.1.1 This annex addresses the general question of obtaining from the estimate y of

the measurand Y, and from the combined standard uncertainty uc(y) of that 
estimate, an expanded uncertainty Up = kpuc(y) that defines an interval y – Up ≤
Y ≤ y + Up that has a high, specified coverage probability or level of confidence 
p. It thus deals with the issue of determining the coverage factor kp that 
produces an interval about the measurement result y that may be expected to 
encompass a large, specified fraction p of the distribution of values that could 
reasonably be attributed to the measurand Y (see clause 6). 

G.1.2 In most practical measurement situations, the calculation of intervals having 
specified levels of confidence – indeed, the estimation of most individual 
uncertainty components in such situations – is at best only approximate.  Even 
the experimental standard deviation of the mean of as many as 30 repeated 
observations of a quantity described by a normal distribution has itself an 
uncertainty of about 13 percent (see table E.1 in annex E). 

 In most cases it does not make sense to try to distinguish between, for example, 
an interval having a level of confidence of 95 percent (one chance in 20 that the 
value of the measurand Y lies outside the interval) and either a 94 percent or 96 
percent interval (1 chance in 17 and 25, respectively).  Obtaining justifiable 
intervals with levels of confidence of 99 percent (1 chance in 100) and higher is 
especially difficult, even if it is assumed that no systematic effects have been 
overlooked, because so little information is generally available about the most 
extreme portions or “tails” of the probability distributions of the input 
quantities. 

G.1.3 To obtain the value of the coverage factor kp that produces an interval 
corresponding to a specified level of confidence p requires detailed knowledge 
of the probability distribution characterized by the measurement result and its 
combined standard uncertainty.  For example, for a quantity z described by a 
normal distribution with expectation µz and standard deviation σ, the value of kp

that produces an interval µz ± kpσ that encompasses the fraction p of the 
distribution, and thus has a coverage probability or level of confidence p, can be 
readily calculated.  Some examples are given in table G.1. 
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Table G.1 – Value of the coverage factor kp that produces an interval 
having level of confidence p assuming a normal distribution 

 

Level of confidence p
(percent) Coverage factor kp

68,27  1 

90  1,645 

95  1,960 

95,45  2 

99  2,576 

99,73  3 

NOTE – By contrast, if z is described by a rectangular probability distribution with expectation 

µz and standard deviation σ/ 3 , where a is the half-width of the distribution, the level of 
confidence p is 57,74 percent for kp = 1; 95 percent for kp = 1,65; 99 percent for kp = 1,71; and 

100 percent for kp ≥ 3 ≈ 1,73.  The rectangular distribution  is “narrower” than the 
normal distribution in the sense that it is of finite extent and has no “tails”. 

G.1.4 If the probability distributions of the input quantities X1, X2, . . . . XN upon 
which the measurand Y depends are known [their expectations, variances, and 
higher moments (see C.2.13 and C.2.22) if the distributions are not normal 
distributions], and if Y is a linear function of the input quantities, Y = c1X1 +
c2X2 + . . . + cNXN, then the probability distribution of Y may be obtained by 
convolving the individual probability distributions [10].  Values of kp that 
produce intervals corresponding to specified levels of confidence p may then be 
calculated from the resulting convolved distribution. 

G.1.5 If the functional relationship between Y and its input quantities is nonlinear and 
a first-order Taylor series expansion of the relationship is not an acceptable 
approximation (see 5.1.2 and 5.1.5), then the probability distribution of Y
cannot be obtained by convolving the distributions of the input quantities.  In 
such cases, other analytical or numerical methods are required. 

G.1.6 In practice, because the parameters characterizing the probability distributions 
of input quantities are usually estimates, because it is unrealistic to expect that 
the level of confidence to be associated with a given interval can be known with 
a great deal of exactness, and because of the complexity of convolving 
probability distributions, such convolutions are rarely, if ever, implemented 
when intervals having specified levels of confidence need to be calculated.  
Instead, approximations are used that take advantage of the Central Limit 
Theorem. 
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G.2 Central Limit Theorem 

G.2.1 If Y = c1X1 + c2X2 + . . . + cNXN = c xi
N

i i=∑ 1 and all the Xi are characterized by 
normal distributions, then the resulting convolved distribution of Y will also be 
normal.  However, even if the distributions of the Xi are not normal, the 
distribution of Y may often be approximated by a normal distribution because of 
the Central Limit Theorem.  This theorem states that the distribution of Y will 
be approximately normal with expectation E(Y) = c E Xi=

N
i i( )1∑ and variance 

σ2(Y) = c Xi
N

i i
2 2

1 σ ( )=∑ , where E(Xi) is the expectation of Xi and σ2(Xi) is the 
variance of Xi, if the Xi are independent and σ2(Y) is much larger than any 
single component c Xi i

2 2σ ( ) from a non-normally distributed Xi.

G.2.2 The Central Limit Theorem is significant because it shows the very important 
role played by the variances of the probability distributions of the input 
quantities, compared with that played by the higher moments of the 
distributions, in determining the form of the resulting convolved distribution of 
Y. Further, it implies that the convolved distribution converges towards the 
normal distribution as the number of input quantities contributing to σ2(Y)
increases; that the convergence will be more rapid the closer the values of 
c Xi i

2 2σ ( ) are to each other (equivalent in practice to each input estimate xi

contributing a comparable uncertainty to the uncertainty of the estime y of the 
measurand Y); and that the closer the distributions of the Xi are to being normal, 
the fewer Xi are required to yield a normal distribution for Y.
EXAMPLE – The rectangular distribution (see 4.3.7 and 4.4.5) is an extreme example of a non-
normal distribution, but the convolution of even as few as three such distributions of equal 
width is approximately normal.  If the half-width of each of the three rectangular distributions is 
a so that the variance of each is σ2/3, the variance of the convolved distribution is σ2 = σ2. The 
95 percent and 99 percent intervals of the convolved distribution are defined by 1,937σ and 
2,379σ, respectively, while the corresponding intervals for a normal distribution with the same 
standard deviation σ are defined by 1,960σ and 2,576σ (see table G.1) [10]. 

 NOTES 

1 For every interval with a level of confidence p greater than about 91,7 percent, the value 
of kp for a normal distribution is larger than the corresponding value for the distribution 
resulting from the convolution of any number and size of rectangular distribution. 

2 It follows from the Central Limit Theorem that the probability distribution of the 
arithmetic mean__ of n observations qk of a random variable q with expectation __ and 

finite standard deviation σ σ n as n → ∞, whatever may be the probability 
distribution of q.  

G.2.3 A practical consequence of the Central Limit Theorem is that when it can be 
established that its requirements are approximately met, in particular, if the 
combined standard uncertainty uc(y) is not dominated by a standard uncertainty 
component obtained from a Type A evaluation based on just a few 
observations, or by a standard uncertainty component obtained from a Type B 
evaluation based on an assumed rectangular distribution, a reasonable first 
approximation to calculating an expanded uncertainty Up = kpuc(y) that provides 
an interval with level of confidence p is to use for kp a value from the normal 
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distribution.  The values most commonly used for this purpose are given in 
table G.1. 

 

G.3 The t-distribution and degrees of freedom 
G.3.1 To obtain a better approximation than simply using a value of kp from the 

normal distribution as in G.2.3, it must be recognized that the calculation of an 
interval having a specified level of confidence requires, not the distribution of 
the variable [Y – E(Y)]/σ(Y), but the distribution of the variable (y – Y)/uc(y).  
This is because in practice, all that is usually available are y, the estimate of Y
as obtained from y = c xi

N
i i=∑ 1 , where xi is the estimate of Xi; and the combined 

variance associated with y, u yc
2 ( ) , evaluated from u yc

2 ( )  = 
c i i

2 2
1 u xi

N ( ),=∑ where u(xi) is the standard uncertainty (estimated standard 
deviation) of the estimate xi.
NOTE – Strictly speaking, in the expression (y – Y)/uc(y), Y should read E(Y).  For simplicity, 
such a dinstinction has only been made in a few places in this Guide.  In general, the same 
symbol has been used for the physical quantity, the random variable that represents that 
quantity, and the expectation of that variable (see 4.1.1, notes). 

G.3.2 If z is a normally distributed random variable with expectation µz and standard 
deviation σ, and z is the arithmetic mean of n independent observations zk of z
with s( z ) the experimental standard deviation of z [see equations (3) and (5) in 
4.2], then the distribution of the variable t = ( z - µz)/s( z ) is the t-distribution or 
Student’s distribution (C.3.8) with v = n – 1 degrees of freedom. 

 Consequently, if the measurand Y is simply a single normally distributed 
quantity X, Y = X; and if X is estimated by the arithmetic mean X of n 
independent repeated observations Xk of X, with experimental standard 
deviation of the mean s(), then the best estimate of Y is y = X and the 
experimental standard deviation of that estimate is uc(y) = s().  Then t = ( X -
µz)/s() = ( X = X)/s() = (y – Y)/uc(y) is distributed according to the t-distribution 
with  

 Pr [- tp(v) ≤ t ≤ tp(v)] = p . . . (G.1a) 

 or 

 Pr [- tp(v) ≤ (y – Y)/uc(y) ≤ tp(v)] = p . . . (G.1b) 

 which can be rewritten as 

 Pr [y - tp(v) uc(y) ≤ Y ≤ y + tp(v) uc(y)] = p . . . (G.1c) 

 In these expressions, Pr[ ] means “probability of” and the t-factor tp(v) is the 
value of t for a given value of the parameter v – the degrees of freedom (see 
G.3.3) – such that the fraction p of the t distribution is encompassed by the 
interval – tp(v) to +tp(v).  Thus the expanded uncertainty 
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 Up = kpuc(y) = tp(v)uc(v) . . . (G.1d) 

 defines an interval y – Up to y + Up, conveniently written as Y = y ± Up, that 
may be expected to encompass a fraction p of the distribution of values that 
could reasonably be attributed to Y, and p is the coverage probability or level of 
confidence of the interval. 

G.3.3 The degrees of freedom v is equal to n – 1 for a single quantity estimated by the 
arithmetic mean of n independent observations, as in G.3.2.  If n independent 
observations are used to determine both the slope and intercept of a straight line 
by the method of least squares, the degrees of freedom of their respective 
standard uncertainties is v = n – 2.  For a least-squares fit of m parameters to n
data points, the degrees of freedom of the standard uncertainty of each 
parameter is v = n – m. (See reference [15] for a further discussion of degrees 
of freedom.) 

G.3.4 Selected values of tp(v) for different values of v and various values of p are 
given in table G.2 at the end of this annex.  As v → ∞ the t-distribution 
approaches the normal distribution and tp(v) ≈ (1 + 2/v)1/2kp, where in this 
expression kp is the coverage factor required to obtain an interval with level of 
confidence p for a normally distributed variable.  Thus the value of tp(∞) in 
table G.2 for a given p equals the value of kp in table G.1 for the same p.
NOTE – Often, the t-distribution is tabulated in quantities; that is, values of the quantile t1-α
are given, where 1 - α denotes the cumulative probability and the relation 

 1 - α =

defines the quantile, where f is the probability density function of t.  Thus tp and t1-α are related 
by p = 1 – 2α. For example, the value of the quantile t0,975, for which 1 - α = 0,975 and α =
0,025, is the same as tp(v) for p – 0,95.  

 

G.4 Effective degrees of freedom 
G.4.1 In genral, the t-distribution will not describe the distribution of the variable (y –

Y)/uc(y) if u yc
2 ( )  is the sum of two or more estimated variance components 

u yi
2 ( ) = c u xi i

2 2 ( ) (see 5.1.3), even if each xi is the estimate of a normally 
distributed input quantity Xi. However, the distribution of that variable may be 
approximated by a t-distribution with an effective degrees of freedom veff 
obtained from the Welch-Satterthwaite formula [16, 17, 18] 

 
u y
v
c

eff

4 ( )
 =  

u y
vi

N
i

i

4

1

( )
=
∑ . . . (G.2a) 

 or 

 veff =
u y
u y

vi

N

c

i

i

4

4

1

( )
( )

=
∑

. . . (G.2b) 



SAUDI STANDARD SASO…./2006

٨٨

 with 

 veff ≤ v
i

N
i

=
∑

1
. . . (G.2c) 

 where u yc
2 ( ) = u yi

N
i
2

1 ( )=∑ (see 5.1.3).  The expanded uncertainty Up = kpuc(y) =
tp(veff)uc(y) then provides an interval Y = y ± Up having an approximate level of 
confidence p.
NOTES 

1 If the value of veff obtained from equation (G.2b) is not an integer, which will usually be 
the case in practice, the corresponding value of tp may be found from table G.2 by 
interpolation or by truncating veff to the next lower integer. 

2 If an input estimate xi is itself obtained from two or more other estimates, then the value 
of vi to be used with u yi

4 ( )  = [ ( )]c u xi i
2 2 in the denominator of equation (G.2b) is the 

effective degrees of freedom calculated from an expression equivalent to equation 
(G.2b). 

3 Depending upon the needs of the potential users of a measurement result, it may be 
useful, in addition to veff, to calculate and report also values for veffA and veffB, 
computed from equation (G.2b) treating separate the standard uncertainties obtained 
from Type A and Type B evaluations.  If the contributions to u yc

2 ( )  of the Type A and 

Type B standard uncertainties alone are denoted, respectively, by u ycA
2 ( ) and u ycB

2 ( ) ,
the various quantities are related by 

 u yc
2 ( )  = u ycA

2 ( )  +  u ycB
2 ( )  

u y
v
c

eff

4 ( )  = u y
v
cA

effA

4 ( )  + u y
v
cB

effB

2 ( )  

EXAMPLE – Consider that Y = f(X1, X2, X3) = bX1X2X3 and that the estimates x1, x2, x3 of the 
normally distributed input quantities X1, X2, X3 are the arithmetic means of n1 = 10, n2 = 5, and 
n3 = 15 independent repeated observations, respectively, with relative standard uncertainties 
u(x1)/x1 = 0,25 percent, u(x2)/x2 = 0,57 percent, and u(x3)/x3 = 0,83 percent.  In this case ci =
∂f/∂Xi = Y/ Xi (to be evaluated at x1, x2, x3 – see 5.1.3, note 1), [uc(y)/y]2 = [ ( ) / ]u x xi i i

2
1

3
=∑ =

(1,03 percent)2 (see note 2 to 5.1.6), and equation (G.2b) becomes 

 veff =
u y
u y

vi

N

c

i

i

4

4

1

( )
( )

=
∑

Thus 

 veff = [ ( ) / ]

[ ( ) / ]

u y y

u x x
vi

c

i i

i

4

4

1

3

=
∑

The value of tp for p = 95 percent and v = 19 is, from table G.2, t95(19) = 2,09; hence the 
relative expanded uncertainty for this level of confidence is U95 = 2,09 x (1,03 percent) = 2,2 
percent.  It may then be stated that Y = y ± U95 = y(1 ± 0,022) (y to be determined from y =
bx1x2x3), or that 0,978y ≤ 1,022y, and that the level of confidence to be associated with the 
interval is approximately 95 percent. 
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G.4.2 In practice, uc(y) depends on standard uncertainties u(xi) of input estimates of 
both normally and non-normally distributed input quantities, and the u(xi) are 
obtained from both frequency-based and a priori probability distributions (that 
is, from both Type A and Type B evaluations).  A similar statement applies to 
the estimate y and input estimates xi upon which y depends.  Nevertheless, the 
probability distribution of the function t = (y – Y)/uc(y) can be approximated by 
the t-distribution if it is expanded in a Taylor series about its expectation.  In 
essence, this is what is achieved, in the lowest order approximation, by the 
Welch-Satterthwaite formula, equation (G.2a) or equation (G.2b). 

 The question arises as to the degrees of freedom to assign to a standard 
uncertainty obtained from a Type B evaluation when veff is calculated from 
equation (G.2b).  Since the appropriate definition of degrees of freedom 
recognizes that v as it appears in the t-distribution is a measure of the 
uncertainty of the variance s2( z ), equation (e.7) in E.4.3 may be used to define 
the degrees of freedom vi,

vi = 1
2

u x
u x

2

2
( )

[ ( )]
i

iσ
= 1

2
∆u x
u x

( )
( )

i

i











−2

. . . (G.3) 

 The quantity in large brackets is the relative uncertainty of u(xi); for a Type B 
evaluation of standard uncertainty it is a subjective quantity whose value is 
obtained by scientific judgement based on the pool of available information. 

 EXAMPLE – Consider that one’s knowledge of how input estimate xi was determined and how 
its standard uncertainty u(xi) was evaluated leads one to judge that the value of u(xi) is reliable 
to about 25 percent.  This may be taken to mean that the relative uncertainty is ∆u(xi)/u(xi) =
0,25, and thus from equation (G.3), vi = (0,25)-2/2 = 8.  If instead one had judged the value of 
u(xi) to be reliable to only about 50 percent, then vi = 2.  (See also table E.1 in annex E.) 

G.4.3 In the discussion in 4.3 and 4.4 of Type B evaluation of standard uncertainty 
from an a priori probability distribution, it was implicitly assumed that the 
value of u(xi) resulting from such an evaluation is exactly known.  For 
example, when u(xi) is obtained from a rectangular probability distribution of 
assumed half-width a = (a+ - a-)/2 as in 4.3.7 and 4.4.5, u(xi) = a/ 3 is 
viewed as a constant with no uncertainty because a+ and a-, and thus a, are so 
viewed (but see 4.3.9, note 2).  This implies through equation (G.3) that vi → ∞
or 1/vi → 0, but it causes no difficulty in evaluating equation (G.2b).  Further, 
assuming that vi → ∞ is not necessarily unrealistic; it is common practice to 
choose a- and a+ in such a way that the probability of the quantity in question 
lying outside the interval a- to a+ is extremely small. 

 

G.5 Other considerations 
G.5.1 An expression found in the literature on measurement uncertainty and often 

used to obtain an uncertainty that is intended to provide an interval with a 95 
percent level of confidence may be written as 

 U95
' = [ t v s95

2 2( )'
eff + 3u2]1/2 . . . (G.4) 
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 Here t95( veff
' ) is taken from the t-distribution for ( veff

' ) degrees of freedom and 
p = 95 percent; veff

' is the effective degrees of freedom calculated from the 
Welch-Satterthwaite formula [equation (G.2b)] taking into account only those 
standard uncertainty components si that have been evaluated statistically from 
repeated observations in the current measurement; s2 = c si i

2 2 ;∑ ci = ∂f/∂xi; and 
u2 = u yj

2 ( )∑ = c aj j
2 2 3( / )∑ accounts for all other components of uncertainty, 

where +aj and –aj are the assumed exactly known upper and lower bounds of Xj

relative to its best estimate xj (that is, xj – aj ≤ Xj ≤ xj + aj). 
 NOTE – A component based on repeated observations made outside the current measurement is 

treated in the same way as any other component included in u2. Hence, in order to make a 
meaningful comparison between equation (G.4) and equation (G.5) of the following subclause, 
it is assumed that such components, if present, are negligible. 

G.5.2 If an expanded uncertainty that provides an interval with a 95 percent level of 
confidence is evaluated according to the methods recommended in G.3 and G.4, 
the resulting expression in place of equation (G.4) is 

 U95 = t95(veff)[s2 + u2]1/2 . . . (G.5) 

 where veff is calculated from equation (G.2b) and the calculation includes all 
uncertainty components. 

 In most cases, the value of U95 from equation (G.5) will be larger than the value 
of U95

' from equation (G.4), if it is assumed that in evaluating equation (G.5), all 
Type B variances are obtained from a priori rectangular distributions with half-
widths that are the same as the bounds aj used to compute u2 of equation (G.4).  
This may be understood by recognizing that, although t95( veff

' ) will in most 
cases be somewhat larger than t95(veff), both factors are close to 2; and in 
equation (G.5) u2 is multiplied by veff

' ≈ 4 while in equation (G.4) it is 
multiplied by 3.  Although the two expressions yield equal values of U95

' and 
U95 for u2 << s2, U95

' will be as much as 13 percent smaller than U95 if u2 << s2.
Thus in general, equation (G.4) yields an uncertainty that provides an interval 
having a smaller level of confidence than the interval provided by the expanded 
uncertainty calculated from equation (G.5). 

 NOTES  

1 In the limits u2/s2 → ∞ and veff → ∞, U95
' → 1,732u while U95 → 1,960u.  In this case, 

U95
' provides an interval having only a 91,7 percent level of confidence, while U95 

provides a 95 percent interval.  This case is approximated in practice when the 
components obtained from estimates of upper and lower bounds are dominant, large in 
number, and have values of u yj

2 ( ) = c aj j
2 2 3/ that are of comparable size. 

2 For a normal distribution, the coverage factor k = 3 = 1,732 provides an interval 
with a level of confidence p = 91,673…percent.  This value of p is robust in the sense 
that it is, in comparison with that of any other value, optimally independent of small 
deviation of the input quantities from normality. 
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G.5.3 Occasionally an input quantity Xi is distributed asymmetrically – deviations 
about its expected value of one sign are more probable than deviations of the 
opposite sign (see 4.3.8).  Although this makes no difference in the evaluation 
of the standard uncertainty u(xi) of the estimate xi of Xi, and thus in the 
evaluation of uc(y), it may affect the calculation of U.

It is usually convenient to give a symmetric interval, Y = y ± U, unless the 
interval is such that there is a cost differential between deviations of one sign 
over the other.  If the asymmetry of Xi causes only a small asymmetry in the 
probability distribution characterized by the measurement result y and its 
combined standard uncertainty uc(y), the probability lost on one side by quoting 
a symmetric interval is compensated by the probability gained on the other side.  
The alternative is to give an interval that is symmetric in probability (and thus 
asymmetric in U): the probability that Y lies below the lower limit y – U- is 
equal to the probability that Y lies above the upper limit y + U+. But in order to 
quote such limits, more information than simply the estimates y and uc(y) [and 
hence more information than simply the estimates xi and u(xi) of each input 
quantity Xi] is needed. 

G.5.4 The evaluation of the expanded uncertainty Up given here in terms of uc(y), and 
the factor tp(veff) from the t-distribution is only an approximation, and it has its 
limitations.  The distribution of (y – Y)/uc(y) is given by the t-distribution only if 
the distribution of Y is normal, the estimate y and its combined standard 
uncertainty uc(y) are independent, and if the distribution of u yc

2 ( ) is a X2

distribution.  The introduction of veff, equation (G.2b), deals only with the 
latter problem, and provides an approximately X2 distribution for u yc

2 ( ) ; the 
other part of the problem, arising from the non-normality of the distribution of 
Y, requires the consideration of higher moments in addition to the variance. 

 

G.6 Summary and conclusions 
G.6.1 The coverage factor kp that provides an interval having a level of confidence p

close to a specified level can only be found if there is extensive knowledge of 
the probability distribution of each input quantity and if these distributions are 
combined to obtain the distribution of the output quantity.  The input estimates 
xi and their standard uncertainties u(xi) by themselves are inadequate for this 
purpose. 

G.6.2 Because the extensive computations required to combine probability 
distributions are seldom justified by the extent and reliability of the available 
information, an approximation to the distribution of the output quantity is 
acceptable.  Because of the Central Limit Theorem, it is usually sufficient to 
assume that the probability distribution of (y – Y)/uc(y) is the t-distribution and 
take kp = tp(veff), with the t-factor based on an effective degrees of freedom veff 
of uc(y) obtained from the Welch-Satterthwaite formula, equation (G.2b). 
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G.6.3 To obtain veff from equation (G.2b) requires the degrees of freedom vi for each 
standard uncertainty component.  For a component obtained from a Type A 
evaluation, vi is obtained from the number of independent repeated observations 
upon which the corresponding input estimate is based and the number of 
independent quantities determined from those observations (see G.3.3).  For a 
component obtained from a Type B evaluation, vi is obtained from the judged 
reliability of the value of that component [see G.4.2 and equation (G.3)]. 

G.6.4 Thus the following is a summary of the preferred method of calculating an 
expanded uncertainty Up = kpuc(y) intended to provide an interval Y = y ± Up
that has an approximate level of confidence p:

1) Obtain y and uc(y) as described in clauses 4 and 5. 

2) Compute veff from the Welch-Satterthwaite formula, equation (G.2b) 
(repeated here for easy reference): 

 veff =
u y
u y

vi

N

c

i

i

4

4

1

( )
( )

=
∑

. . . (G.2b) 

 If u(xi) is obtained from a Type A evaluation, determine vi as outlined in 
G.3.3.  If u(xi) is obtained from a Type B evaluation and it can be treated 
as exactly known, which is often the case in practice, → ∞; otherwise, 
estimate vi from equation (G.3). 

3) Obtain the t-factor tp(veff) for the desired level of confidence p from table 
G.2.  If veff is not an integer, either interpolate or truncate veff to the next 
lower integer. 

4) Take kp = tp(veff) and calculate Up = kpuc(y). 

G.6.5 In certain situations, which should not occur too frequently in practice, the 
conditions required by the Central Limit Theorem may not be well met and the 
approach of G.6.4 may lead to an unacceptable result.  For example, if uc(y) is 
dominated by a component of uncertainty evaluated from a rectangular 
distribution whose bounds are assumed to be exactly known, it is possible [if 
tp(veff) > 3 ] that y + Up and y – Up, the upper and lower limits of the 
interval defined by Up, could lie outside the bounds of the probability 
distribution of the output quantity Y. Such cases must be dealt with on an 
individual basis but are often amenable to an approximate analytic treatment 
(involving, for example, the convolution of a normal distribution with a 
rectangular distribution [10]). 

G.6.6 For many practical measurements in a broad range of fields, the following 
conditions prevail: 

- the estimate y of the measurand Y is obtained from estimates xi of a 
significant number of input quantities Xi that are describable by well-
behaved probability distributions, such as the normal and rectangular 
distributions; 
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- the standard uncertainties u(xi) of these estimates, which may be obtained 
from either Type A or Type B evaluations, contribute comparable 
amounts to the combined standard uncertainty uc(y) of the measurement 
result y;

- the linear approximation implied by the law of propagation of uncertainty 
is adequate (see 5.1.2 and E.3.1); 

- the uncertainty of uc(y) is reasonable small because its effective degrees of 
freedom veff has a significant magnitude, say greater than 10. 

 Under these circumstances, the probability distribution characterized by the 
measurement result and its combined standard uncertainty can be assumed to be 
normal because of the Central Limit Theorem; and uc(y) can be taken as a 
reasonably reliable estimate of the standard deviation of that normal distribution 
because of the significant size of veff. Then, based on the discussion given in 
this annex, including that emphasizing the approximate nature of the 
uncertainty evaluation process and the impracticality of trying to distinguish 
between intervals having levels of confidence that differ by one or two percent, 
one may do the following: 

- adopt k = 2 and assume that U = 2uc(y) defines an interval having a level 
of confidence of approximately 95 percent; 

 or, for more critical applications, 

- adopt k = 3 and assume that U = 3uc(y) defines an interval having a level 
of confidence of approximately 99 percent. 

 Although this approach should be suitable for many practical measurements, its 
applicability to any particular measurement will depend on how close k = 2
must be to t95(veff) or k = 3 must be to t99(veff); that is, on how close the level 
of confidence of the interval defined by U = 2uc(y) or U = 3 uc(y) must be to 95 
percent or 99 percent, respectively.  Although the veff = 11, k = 2 and k = 3
underestimate t95(11) and t99 (11) by only about 10 and 4 percent, respectively 
(see table G.2), this may not be acceptable in some cases.  Further, for all 
values of veff somewhat larger than 13, k = 3 produces an interval having a level 
of confidence larger than 99 percent.  (See table G.2, which also shows that for 
veff → ∞ the levels of confidence of the intervals produced by k = 2 and k = 3
are 95,45 and 99,73 percent, respectively.  Thus, in practice, the size of veff and 
what is required of the expanded uncertainty will determine whether this 
approach can be used. 
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Table G.2 – Value of tp(v) from the t-distribution for degrees of freedom v that defines  
an interval – tp(v) to +tp(v) that encompasses the fraction p of the distribution 

 

Degrees of 
freedom Fraction p in percent 

v 68,27(a) 90 95 95,45(a) 99 99,73(a) 

1 1,84 6,31 12,71 13,97 63,66 235,80 
2 1,32 2,92 4,30 4,53 9,92 19,21 
3 1,20 2,35 3,18 3,31 5,84 9,22 
4 1,14 2,13 2,78 2,87 4,60 6,62 
5 1,11 2,02 2,57 2,65 4,03 5,51 

6 1,09 1,94 2,45 2,52 3,71 4,90 
7 1,08 1,89 2,36 2,43 3,50 4,53 
8 1,07 1,86 2,31 2,37 3,36 4,28 
9 1,06 1,83 2,26 2,32 3,25 4,09 
10 1,05 1,81 2,23 2,28 3,17 3,96 

11 1,05 1,80 2,20 2,25 3,11 3,85 
12 1,04 1,78 2,18 2,23 3,05 3,76 
13 1,04 1,77 2,16 2,21 3,01 3,69 
14 1,04 1,76 2,14 2,20 2,98 3,64 
15 1,03 1,75 2,13 2,18 2,95 3,59 

16 1,03 1,75 2,12 2,17 2,92 3,54 
17 1,03 1,73 2,11 2,16 2,90 3,51 
18 1,03 1,73 2,10 2,15 2,88 3,48 
19 1,03 1,73 2,09 2,14 2,86 3,45 
20 1,03 1,72 2,09 2,13 2,85 3,42 

25 1,02 1,71 2,06 2,11 2,79 3,33 
30 1,02 1,70 2,04 2,09 2,75 3,27 
35 1,01 1,70 2,03 2,07 2,72 3,23 
40 1,01 1,68 2,02 2,06 2,70 3,20 
45 1,01 1,68 2,01 2,06 2,69 3,18 

50 1,01 1,68 2,01 2,05 2,68 3,16 
100 1,005 1,660 1,984 2,025 2,626 3,077 
∞ 1,000 1,645 1,960 2,000 2,576 3,000 
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Annex H 
 

Examples 
 

This annex gives six examples, H.1 to H.6, which are worked out in considerable detail in 
order to illustrate the basic principles presented in this Guide for evaluating and expressing 
uncertainty in measurement.  Together with the examples included in the main text and in 
some of the other annexes, they should enable the users of this Guide to put these 
principles into practice in their own work. 

Because the examples are for illustrative purposes, they have by necessity been simplified.  
Moreover, because they and the numerical data used in them have been chosen mainly to 
demonstrate the principles of this Guide, neither they nor the data should necessarily be 
interpreted as describing real measurements.  While the data are used as given, in order to 
prevent rounding errors, more digits are retained in intermediate calculations than are 
usually shown.  Thus the stated results of a calculation involving several quantities may 
differ slightly from the result implied by the numerical values given in the text for these 
quantities. 

It is pointed out in earlier portions of this Guide that classifying the methods used to 
evaluate components of uncertainty as Type A or Type B is for convenience only; it is not 
required for the determination of the combined standard uncertainty or expanded 
uncertainty of a measurement result because all uncertainty components, however they are 
evaluated, are treated in the same way (see 3.3.4, 5.1.2, and E.3.7).  Thus, in the examples, 
the method used to evaluate a particular component of uncertainty is not specifically 
identified as to its type.  However, it will be clear from the discussion whether a 
component is obtained from a Type A or a Type B evaluation. 

H.1 End-gauge calibration 
 This example demonstrates that even an apparently simple measurement may 

involve subtle aspects of uncertainty evaluation. 

H.1.1 The measurement problem 
 The length of a nominally 50 mm end gauge is determined by comparing it with 

a known standard of the same nominal length.  The direct output of the 
comparison of the two end gauges is the difference d in their lengths: 

 

d = l (1 + αθ) – lS (l + αSθS) … (H.1) 

 where 

l is the measurand, that is, the length at 20oC of the end gauge being 
calibrated; 

ls is the length of the standard at 20oC as given in its calibration certificate; 

α and αS are the coefficients of thermal expansion, respectively, of the gauge 
being calibrated and the standard; 
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θ and θS are the deviations in temperature from the 20oC reference 
temperature, respectively, of the gauge and the standard. 

H.1.2 Mathematical model 
 From equation (H.1), the measurand is given by 

 l = l d
(1

S S S( )
)

1 + +

+

α θ

αθ
= lS + d – lS [δα · θ + αS · δθ] … (H.2) 

 If the difference in temperature between the end gauge being calibrated and the 
standard is written as δθ = θ - θS, and the difference in their thermal expansion 
coefficients as δα = α - αS, equation (H.2) becomes 

 l = f(lS, d, αS, θ, δα, δθ) = lS + d – lS [δα · θ + αS · δθ] … (H.3) 

 The differences δθ and δα, but not their uncertainties, are estimated to be zero; 
and δα, αS, δθ and θ are assumed to be uncorrelated.  (If the measurand were 
expressed in terms of the variables θ, θS, α and αS, it would be necessary to 
include the correlation between θ, and θS, and between α and αS.) 

 It thus follows from equation (H.3) that the estimate of the value of the 
measurand l may be obtained from the simple expression lS + d where lS is the 
length of the standard at 20oC as given in its calibration certificate and d is 
estimated by d , the arithmetic mean of n = 5 independent repeated 
observations.  The combined standard uncertainty uc(l) of l is obtained by 
applying equation (10) in 5.1.2 to equation (H.3), as discussed below. 

 NOTE – In this and the other examples, for simplicity of notation, the same symbol is used for a 
quantity and its estimate. 

H.1.3 Contributory variances 
 The pertinent aspects of this example as discussed in this and the following sub-

clauses are summarized in table H.1. 

 Since it is assumed that δα = 0 and δθ = 0, the application of equation (10) in 
5.1.2 to equation (H.3) yields 

 u c
2 (l) = c S

2 u2(lS) + c d
2 u2(d) + c αS

2 u2(αS)

… (H.4) 
 + c θ

2 u2(θ) + c δα
2 u2(δα) + c δθ

2 u2(δθ)
with 

 cS = ∂f/∂lS = 1 - (δα · θ + αS · δθ) = 1

cd = ∂f/∂d = 1

cαS = ∂f/∂αS = 1Sδθ = 0

cθ = ∂f/∂θ = 1Sδα = 0

cδα = ∂f/∂δα = 1Sθ

cδθ = ∂f/∂δθ = 1SαS
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 and thus 

 u c
2 (l) = c S

2 u2(lS) + u2(d) + l S
2 θ 2 u2(δα) + l S

2 α S
2 u2(δθ) … (H.5) 

H.1.3.1 Uncertainty of the calibration of the standard, u(lS)
The calibration certificate gives  as the  expanded  uncertainty of the  standard 
U = 0,075 µm and states that it was obtained using a coverage factor of k = 3.
The standard uncertainty is then 

u(lS) = (0,075 µm) /3  =  25 nm 

H.1.3.2 Uncertainty of the measured difference in lengths, u(d)
The pooled experimental standard deviation characterizing the comparison of l
and lS was determined from the variability of 25 independent repeated 
observations of the difference in lengths of two standard end gauges and was 
found to be 13 nm.  In the comparison of this example, five repeated 
observations were taken.  The standard uncertainty associated with the 
arithmetic mean of these readings is then (see 4.2.4). 

u( d ) = s( d ) = (13 nm) / 5 = 5.8 nm

According to the calibration certificate of the comparator used to compare l
with lS, its uncertainty “due to random errors” is ± 0.01 µm at a level of 
confidence of 95 percent and is based on 6 replicate measurements; thus the 
standard uncertainty, using the t-factor t95(5) = 2.57 for v = 6 – 1 = 5 degrees of 
freedom (see annex G, table G.2), is 

u(d1) = (0,01 µm) /2.57  =  3.9 nm 

 The uncertainty of the comparator “due to systematic errors” is given in the 
certificate as 0.02 µm at the “three sigma level.”  The standard uncertainty from 
this cause may therefore be taken to be 

u(d2) = (0,02 µm) /3  =  6.7 nm 

 The total contribution is obtained from the sum of the estimated variances: 

 u2(d) = u2( d ) + u2 (d1) + u2(d2) = 93 nm2

or 

 u(d) = 9.7 nm 

H.1.3.3 Uncertainty of the thermal expansion coefficient, u(αS)

The coefficient of thermal expansion of the standard end gauge is given as αS =
11.5 x 10-6 with an uncertainty represented by a rectangular distribution with 
bounds ± 2 x 10-6 oC-1. The standard uncertainty is then [less equation (7) in 
4.3.7] 

 u(αS) = (2 x 10-6 oC-1) / 3 = 1.2 x 10-6  oC-1 
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Table H.1 – Summary of standard uncertainty components 
Standard  

uncertainty 
component 

u(xi)

Source of uncertainty Value of standard 
uncertainty 

u(xi)

ci ≡
∂f/∂xi

ui(l) ≡
| ci | u(xi)

(nm) 

Degree  
of 

freedom 

u(lS) Calibration of standard end gauge 25 nm 1 25 18 

u(d) Measured difference between end gauges 9.7 nm 1 9.7 25.6 

u( d ) repeated observations 5.8 nm 24 

u(d1) random effects of comparator 3.9 nm 5

u(d2) systematic effects of comparator 6.7 nm 8

u(αS) Thermal expansion coefficient of 
standard end gauge 

1.2 x 10-6 oC-1 0 0  

u(θ) Temperature of test bed 0.41 oC 0 0

u( θ ) mean temperature of bed 0.2 oC

u(∆) cyclic variation of temperature of room 0.35 oC

u(αS) Difference in expansion coefficients of 
end gauges 

0.58 x 10-6 oC-1 -lSθ 2.9 50 

u(δθ) Difference in temperatures of end gauges 0.029oC -lSαS 16.6 2 

u c
2 (l) = ∑u i

2 (l) = 1002 nm2

uc(l) = 32 nm
veff(l) = 16

Since cαS = ∂f/∂αS = 1Sδθ = 0 as indicated in H.1.3, this uncertainty 
contributes nothing to the uncertainty of l in first order.  It does, however, have 
a second-order contribution that is discussed in H.1.7. 

H.1.3.4 Uncertainty of the deviation of the temperature of the end gauge, u(θ)

The temperature of the test bed is reported as (19.9 ± 0.5)oC; the temperature at 
the time of the individual observations was not recorded.  The stated maximum 
offset, ∆ = 0.5oC, is said to represent the amplitude of an approximately cyclical 
variation of the temperature under a thermostatic system, not the uncertainty of 
the mean temperature.  The value of the mean temperature deviation 

 θ = 19.9oC = 20oC = - 0.1oC

is reported as having a standard uncertainty itself due to the uncertainty in the 
mean temperature of the test bed of  

 u( θ ) = 0.2oC
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 while the cyclic variation in time produces a U-shaped (arcsine) distribution of 
temperatures resulting in a standard uncertainty of 

 u(∆) = (0.5 oC) / 2 = 0.35oC

The temperature deviation θ may be taken equal to θ , and the standard 
uncertainty of θ is obtained from 

 u2(θ) = u2( θ ) + u2(∆) = 0.165oC

which gives 

 u(θ) = 0.041oC

Since cθ = ∂f/∂θ = 1Sδα = 0 as indicated in H.1.3, this uncertainty also 
contributes nothing to the uncertainty of l in first order; but it does have a 
second-order contribution that is discussed in H.1.7. 

H.1.3.5 Uncertainty of the difference in expansion coefficients, u(δα)

The estimated bounds on the variability of δα are ± 1 x 10-6  oC-1, with an equal 
probability of δα having any value within those bounds.  The standard 
uncertainty is   

 u(δα) = (1 x 10-6 oC-1) / 3 = 0.58 x 10-6 oC-1 

H.1.4 Combined standard uncertainty 
 The combined standard uncertainty uc(l) is calculated from equation (H.5).  The 

individual terms are collected and substituted into this expression to obtain 

 u c
2 (l) = (25 nm)2 + (9.7 nm)2 … (H.6a) 

 + (0.05 m)2 (-0.1 oC)2 (0.58 x 10-6 oC-1)2

+ (0.05 m)2 (11.5 x 10-6 oC-1)2 (0.029 oC)2

= (25 nm)2 + (16.6 nm)2 … (H.6b) 

 + (2.9 nm)2 + (16.6 nm)2

= 1002 nm2

or 

 uc(l) = 32 nm               … (H.6c) 

 The dominant component of  uncertainty  is  obviously that of the standard, 
u(lS) = 25 nm. 

H.1.5 Final result 
 The calibration certificate for the standard end gauge gives lS = 50,000 623 mm 

as its length at 20oC.  The arithmetic mean d of the five repeated observations 
of the difference in lengths between the unknown end gauge and the standard 
gauge is 215 nm.  Thus, since l = lS + d (see H.1.2), the length l of the 
unknown end gauge of 20oC is 50,000 838 mm.  Following 7.2.2, the final 
result of the measurement may be stated as: 
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 l = 50,000 838 mm with a combined standard uncertainty uc = 32 nm.  The 
corresponding relative combined standard uncertainty is uc/l = 6.4 x 10-7.

H.1.6 Expanded uncertainty 
 Suppose that one is required to obtain an expanded uncertainty U99 = k99uc(l)

that provides an interval having a level of confidence of approximately 99 
percent.  The procedure to use is that summarized in G.6.4, and the required 
degrees of freedom are indicated in table H.1.  These were obtained as follows: 

1) Uncertainty of the calibration of the standard, u(lS) [H.1.3.1].  The 
calibration certificate states that the effective degrees of freedom of the 
combined standard uncertainty from which the quoted expanded 
uncertainty was obtained is veff(lS) = 18.

2) Uncertainty of the measured difference in lengths, u(d) [H.1.3.2].  
Although d was obtained from five repeated observations, because u( d )
was obtained from a pooled experimental standard deviation based on 25 
observations, the degrees of freedom of u( d ) is v( d ) = 25 – 1 = 24 (see 
H.3.6, note).  The degrees of freedom of u(d1), the uncertainty due to 
random effects on the comparator, is v(d1) = 6 – 1 = 5 because d1 was 
obtained from six repeated measurements.  The ± 0.02 µm uncertainty for 
systematic effects on the comparator may be assumed to be reliable to 25 
percent, and thus the degrees of freedom from equation (G.3) in G.4.2 is 
v(d2) = 8 (see the example of G.4.2).  The effective degrees of freedom of 
u(d), veff(d), is then obtained from equation (G.2b) in G.4.1: 

 [ ( ) ( ) ( )]

( )
( )

( )
( )

( )
( )

u d u d u d

u d
v d

u d
v d

u d
v d

2 2
1

2
2

2

4 4
1

1

4
2

2

+ +

+ +

 

= ( . )

(5. ) ( . ) ( . )

9 7

8
24

39
5

6 7
8

4

4 4 4

nm

nm nm nm+ +

 = 25.6

3) Uncertainty of the difference in expansion coefficients, u(δα) [H.1.3.5].  
The estimated bounds of  ± 1 x 10-6 oC-1 on the variability of δα are 
deemed to be reliable to 10 percent.  This gives, from equation (G.3) in 
G.4.2, v(δα) = 50.

4) Uncertainty of the difference in temperatures of the gauges, u(δθ)
[H.1.3.6].  The estimated interval –0.05oC to +0.05oC for the temperature 
difference δθ is believed to be reliable only to 50 percent, which from 
equation (G.3) in G.4.2 gives v(δθ) = 2.

The calculation of veff(l) from equation (G.2b) in G.4.1 proceeds in exactly the 
same way as for the calculation of veff(d) in 2) above.  Thus from equations 
(H.6b) and (H.6c) and the values for v given in 1) through 4). 
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veff(l) = ( )

( ) ( . )
.

( . ) ( . )

32

25
18

9 7
256

2 9
50

16 6
2

4

4 4 4 4

nm

nm nm nm nm+ + +

 

= 16.7

To obtain the required expanded uncertainty, this value is first truncated to the 
next lower integer, veff(l) = 16.  It then follows from table G.2 in annex G that 
t99(16) = 2.92, and hence U99 = t99(16uc(l) = 2.92 x (32 nm) = 93 nm.  
Following 7.2.4, the final result of the measurement may be stated as: 

 l = (50,000 838 ± 0.000 093) mm, where the number following the symbol 
± is the numerical value of an expanded uncertainty U = kuc, with U
determined from a combined standard uncertainty uc = 32 nm and a 
coverage factor k = 2.92 based on the t-distribution for v = 16 degrees of 
freedom, and defines an interval estimated to have a level of confidence of 
99 percent.  The corresponding relative combined standard uncertainty is 
U/l = 1.9 x 10-6.

H.1.7 Second-order terms 
 The note to 5.1.2 points out that equation (10), which is used in  this example to 

obtain the combined standard uncertainty uc(l), must be augmented when the 
nonlinearity of the function Y = f(X1, X2, . . . ., XN) is so significant that the 
higher-order terms in the Taylor series expansion cannot be neglected.  Such is 
the case in this example, and therefore the evaluation of uc(l) as presented up to 
this point is not complete.  Application to equation (H.3) of the expression 
given in the note to 5.1.2 yields in fact two distinct non-negligible second-order 
terms to be added to equation (H.5).  These terms, which arise from the 
quadratic term in the expression of the note, are 

 l S
2 u2(δα) u2(θ) + l S

2 u2(αS) u2(δθ)

but only the first of these terms contributes significantly to uc(l): 

 lS u(δα) u(θ) = (0.05 m) (0.58 x 10-6 oC-1) (0.41 oC)   

 = 11.7 nm

lS u(αS) u(δθ) = (0.05 m) (1.2 x 10-6 oC-1) (0.029 oC)   

 = 1.7 nm

The second-order terms increase uc(l) from 32 nm to 34 nm. 

H.2 Simultaneous resistance and reactance measurement 
 This example demonstrates the treatment of multiple measurands or output 

quantities determined simultaneously in the same measurement and the 
correlation of their estimates.  It considers only the random variations of the 
observations; in actual practice, the uncertainties of corrections for systematic 
effects would also contribute to the uncertainty of the measurement results.  
The data are analyzed in two different ways with each yielding essentially the 
same numerical values. 
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H.2.1 The measurement problem 
 The resistance R and the reactance X of a circuit element are determined by 

measuring the amplitude V of a sinusoidally-alternating potential difference 
across its terminals, the amplitude I of the alternating current passing through it, 
and the phase-shift angle φ of the alternating potential difference relative to the 
alternating current.  Thus the three input quantities are V, I, and φ and the three 
output quantities – the measurands – are the three impedance components R, X,
and Z. Since Z2 = R2 + X2, there are only two independent output quantities. 

H.2.2 Mathematical model and data 
 The measurands are related to the input quantities by Ohm’s law: 

 R = V
I

cos φ; X = V
I

sin φ; Z = V
I

… (H.7) 

 Consider that five independent sets of simultaneous observations of the three 
input quantities V, I, and φ are obtained under similar conditions (see B.2.15), 
resulting in the data given in table H.2.  The arithmetic means of the 
observations and the experimental standard deviations of those means 
calculated from equation (3) and (5) in 4.2 are also given.  The means are taken 
as the best estimates of the expected values of the input quantities, and the 
experimental standard deviations are the standard uncertainties of those means. 

 Because the means V , I and φ are obtained from simultaneous observations, 
they are correlated and the correlations must be taken into account in the 
evaluation of the standard uncertainties of the measurands R, X, and Z. The 
required correlation coefficients are readily obtained from equation (14) in 5.2.2 
using values of s(V , I ), s(V ,φ ), and s( I , φ ) calculated from equation (17) in 
5.2.3.  The results are included in table H.2, where it should be recalled that 
r(xi, xj) = r(xj, xi) and r(xi, xi) = 1.

H.2.3 Results: approach 1 
 Approach 1 is summarized in Table H.3. 

 The values of the three measurands R, X, and Z are obtained from the relations 
given in equation (H.7) using the mean values V , I , and φ of table H.2 for V, I,
and φ. The standard uncertainties of R, X, and Z are obtained from equation 
(16) in 5.2.2 since, as pointed out above, the input quantities V , I , and φ are 
correlated.  As an example, consider Z = V / I . Identifying  V with x1, I with 
x2, and f with Z = V / I , equation (16) in 5.2.2 yields for the combined standard 
uncertainty of Z.

u c
2 (Z) = 1 2

2
2

2
2

I
u V V

I
u I





+








( ) ( )               … (H.8a) 

 + 2 1
2I

V

I






−








 u(V ) u( I ) r(V , I )
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= Z2 u V
V
( )









2

+ Z2 u I
I
( )









2

… (H.8b) 

- 2 Z2 u V
V
( )









u I
I
( )







 r(V , I )

or 

 u c r,
2 ( Z ) = u r

2 (V ) + u r
2 ( I ) – 2ur(V ) ur( I ) r(V , I ) … (H.8c) 

 where u(V ) = S(V ), u( I ) = S( I ), and the subscript “r” in the last expression 
indicates that u is a relative uncertainty.  Substitution of the appropriate values 
from table H.2 into equation (H.8a) then gives uc(Z) = 0.236 Ω.

Because the three measurands or output quantities depend on the same input 
quantities, they too are correlated.  The elements of the covariance matrix that 
describes this correlation may be written in general as  

 u(yt, ym) =
i=

N

1
∑

j=

N

1
∑

∂
∂
y
x

l

i

∂
∂
y
x

m

j
u(xi) u(xj) r(xi, xj) … (H.9) 

Table H.2 – Values of the input quantities V, I, and φ obtained from five sets of 
simultaneous observations 

Set number Input quantities 

k V
(V) 

I
(mA) 

φ

(rad) 

1 5,007 19,663 1,0456 

2 4,994 19,639 1,0438 

3 5,005 19,640 1,0468 

4 4,990 19,685 1,0428 

5 4,999 19,678 1,0433 

Arithmetic  
mean 

V = 4,9990 I = 19,6610 φ = 1,044 46 

Experimental 
standard deviation 

of mean 

S(V ) = 0,32 S( I ) = 0,0095 
S(φ ) = 0,000 75 

Correlation coefficients 

r(V , I ) = 0,36 

r(V ,φ ) = 0,36 

r(V ,φ ) = 0,36 
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 Where y1 = ft(x1, x2, . . . , XN) and ym = fm (x1, x2, . . . XN).  Equation (H.9) is a 
generalization of equation (F.2) in F.1.2.3 when the q1 in that expression are 
correlated.  The estimated correlation coefficients of the output quantities are 
given by r(yt, ym) = u(yt, ym)/u(yt)u(ym), as indicated in equation (14) in 5.2.2.  It 
should be recognized that the diagonal elements of the covariance matrix, u(yt,
yt) ≡ u2(yt), are the estimated variances of the output quantities yt (see 5.2.2, 
note 2) and that for m = l, equation (H.9) is indicated to equation (16) in 5.2.2. 

 To apply equation (H.9) to this example, the following identifications are made: 

 y1 = R x1 = V u(xi) = S(xi)

y1 = X x1 = I u(xi) = S(xi)

y1 = Z x1 = φ u(xi) = S(xi)

The results of the calculations of R, X, and Z and of their estimated variances 
and correlation coefficients are given in table H.3. 

H.2.4 Results:  approach 2 
 Approach 2 is summarized in table H.4. 

 Since the data have been obtained as five sets of observations of the three input 
quantities, V, I, and φ, it is possible to compute a value for R, X, and Z from 
each set of input data, and then take the arithmetic mean of the five individual 
values to obtain the best estimates of R, X, and Z. The experimental standard 
deviation of each mean (which is its combined standard uncertainty) is then 
calculated from the five individual values in the usual way [equation (5) in 
4.2.3]; and the estimated covariances of the three means are calculated by 
applying equation (17) in 5.2.3 directly to the five individual values from which 
each mean is obtained.  There are no differences in the output values, standard 
uncertainties, and estimated covariances provided by the two approaches except 
for second-order effects associated with replacing terms such as V / I and cos 
φ by V/I and cos φ.

To demonstrate this approach, table H.4 gives the values of R, X, and Z
calculated from each of the five sets of observations.  The arithmetic means, 
standard uncertainties, and estimated correlation coefficients are then directly 
computed from these individual values.  The numerical results obtained in this 
way are negligibly different from the results given in table H.3. 

 In the terminology of the note to 4.1.4, approach 2 is an 

Table H.3 – Calculated values of the output quantities R, X, and Z: approach 1  
Measurand 

index 
l

Relationship between 
estimate of measurand 

y1 and input estimates xi

Value of estimate 
y1, which is the 

result of measurement 

Combined standard 
uncertainty uc(yl)

of result of measurement 
1 y1 = R = (V / I ) cos φ y1 = R = 127,732 Ω uc(R) = 0,071 Ω

uc(R)/R = 0,06 x 10-2 
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2 y2 = X = (V / I ) sin φ y1 = X = 219,847 Ω uc(X) = 0,295 Ω

uc(X)/X = 0,13 x 10-2 

3 y3 = Z = V / I y1 = Z = 254,260 Ω uc(Z) = 0,236 Ω

uc(Z)/Z = 0,09 x 10-2 

Correlation coefficients r(yl, ym)

r(y1, y2) = r(R, X) = 0,588 

r(y1, y3) = r(R, Z) = 0,485

r(y2, y3) = r(X, Z) = 0,993

Table H.4 – Calculated values of the output quantities R, X, and Z: approach 2  

Set number Input quantities 

k R = (V/I) cos φ
(Ω)

X = (V/I) sin φ
(Ω)

Z = V/I 
(Ω)

1 127,67 220,32 254,64 

2 127,89 219,79 254,29 

3 127,51 220,64 254,84 

4 127,71 218,97 254,49 

5 127,88 219,51 254,04 

Arithmetic  
mean 

y1 = R = 127,732 y2 = X = 219,847 y3 = Z = 254,260 

Experimental 
standard deviation 

of mean 

S( R ) = 0,071 S( X ) = 0,295 S( Z ) = 0,236

Correlation coefficients r(yl, ym)

r(y1, y2) = r( R , X ) = 0,588

r(y1, y3) = r( R , Z ) = 0,485 

r(y2, y3) = r( X , Z ) = 0,993

example of obtaining the estimate y from Y = ( ( )tk=
n

k1∑ Yk)/n, while approach 
1 is an example of obtaining y from y = f( X 1 , X 2 , . . . . X N ).  As pointed out 
in that note, in general, the two approaches will give identical results if f is a 
linear function of its input quantities (provided that the experimentally observed 
correlation coefficients are taken into account when implementing approach 1).  
If f is not a linear function, then the results of approach 1 will differ from those 
of approach 2 depending on the degree of nonlinearity and the estimated 
variances and covariances of the Xi. This may be seen from the expression 
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 y = f( X 1 , X 2 , . . . . X N )

... (H.10)  

 + 1
2 i

N

=
∑

1 j=

N

1
∑

∂
∂ ∂

2 f
XXi j

u( X i , X j ) + . . .

where the second term on the right-hand side is the second-order term in the 
Taylor series expansion of f in terms of the X i (see also 5.1.2, note).  In the 
present case approach 2 is preferred because it avoids the approximation y =
f( X 1 , X 2 , . . . . X N ) and better reflects the measurement procedure used – the 
data were in fact collected in sets. 

 On the other hand, approach 2 would be inappropriate if the data of table H.2 
represented n1 = 5 observations of the potential difference V, followed by n2 = 5
observations of the current I, and then followed by n3 = 5 observations of the 
phase φ, and would be impossible if n1 ≠ n2 ≠ n3. (It is in fact poor 
measurement procedure to carry out the measurements in this way since the 
potential difference across a fixed impedance and the current through it are 
directly related.) 

 If the data of table H.2 are reinterpreted in this manner so that approach 2 is 
inappropriate, and if correlations among the quantities V, I, and φ are assumed 
to be absent, then the observed correlation coefficients have no significance and 
should be set equal to zero.  If this is done in table H.2, equation (H.9) reduces 
to the equivalent of equation (F.2) in F.1.2.3, namely, 

 u(y1, ym) =
i=

N

1
∑

∂
∂
y
x

l

i

∂
∂
y
x
m

i
u2(xi) ... (H.11) 

 and its application to the data of table H.2 leads to the changes in table H.3 
shown in table H.5. 

Table H.5 – Changes in table H.3 under the assumption that  
the correlation coefficients of table H.2 are zero 

Combined standard uncertainty 

uc(yl) of result of measurement 

uc(R) = 0,195 Ω

uc(R)/R = 0,15 x 10-2 

uc(X) = 0,201 Ω

uc(X)/X = 0,09 x 10-2 

uc(Z) = 0,204 Ω

uc(Z)/Z = 0,08 x 10-2 

Correlation coefficients r(yl, ym)

r(y1, y2) = r(R, X) = 0,056
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r(y1, y3) = r(R, Z) = 0,527 

r(y2, y3) = r(X, Z) = 0,878 

H.3 Calibration of a thermometer  
 This example illustrates the use of the method of least squares to obtain a linear 

calibration curve and how the parameters of the fit, the intercept and slope, and 
their estimated variances and covariance, are used to obtain from the curve the 
value and standard uncertainty of a predicted correction. 

H.3.1 The measurement problem 
 A thermometer is calibrated by comparing n = 11 temperature reading tk of the 

thermometer, each having negligible uncertainty, with corresponding known 
reference temperatures tR,k in the temperature range 21 oC to 27 oC to obtain the 
corrections bk = tR,k - tR to the readings.  The measured corrections bk and and 
measured temperatures tR are the input quantities of the evaluation.  A linear 
calibration curve 

 b(t) = y1 + y2 (t – t0) … (H.12) 

 is fitted to the measured corrections and temperatures by the method of least 
squares.  The parameters y1 and y2, which are respectively the intercept and 
slope of the calibration curve, are the two measurands or output quantities to be 
determined.  The temperature t0 is a conveniently chosen exact reference 
temperature; it is not an independent parameter to be determined by the least-
squares fit.  Once y1 and y2 are found, along with their estimated variances and 
covariance, equation (H.12) can be used to predict the value and standard 
uncertainty of the correction to be applied to the thermometer for any value t of
the temperature. 

H.3.2 Least-squares fitting 
 Based on the method of least squares and under the assumptions made in H.3.1 

above, the output quantities y1 and y2 and their estimated variances and 
covariance are obtained by minimizing the sum 

 S =
k

n

=
∑

1
[bk – y1 – y2(tk – t0)]2

This leads to the following equations for y1, y2 their experimental variances 
S

2(y1) and S
2(y2), and their estimated correlation coefficient r(y1, y2) = S(y1, y2)/ 

S(y1)S(y2), where S(y1, y2) is their estimated covariance: 

 y1 =
( )( ) ( )( )b b

D
k k k k k∑ ∑ − ∑ ∑θ θ θ2

… (H.13a) 

 y2 =
n b b

D
k k k k∑ − ∑ ∑θ θ( )( )

 … (H.13b) 

 S
2(y1) = S

2 2θk

D
∑ … (H.13c) 
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 S
2(y2) = n

D
S

2

… (H.13d) 

 r(y1, y2) = -
θ

θ
k

k

∑

∑n 2
… (H.13e) 

 S
2 =

[ ( )]b b t
n -

k k−∑ 2

2
… (H.13f) 

 D = n ∑θ k
2 - (∑θk)2

… (H.13g) 
 = n ∑θ k

2 - θ )2 = n ∑ (tk - t )2

where all sums are from k = 1 to n, θk = tk – t0, θ = ∑θk/n, and t = ∑tk)/n; [bk –
b(tk)] is the difference between the measured or observed correction bk at the 
temperature tk and the correction b(tk) predicted by the fitted curved b(t) = y1 +
y2(t – t0) at tk. The variance S

2 is a measure of the overall uncertainty of the fit, 
where the factor n – 2 reflects the fact that because two parameters, y1 and y2,
are determined by the n observations, the degrees of freedom of S

2 is v = n – 2
(see G.3.3). 

H.3.3 Calculation of results 
 The data to be fitted are given in the second and third columns of table H.6.  

Taking t0 = 20oC as the reference temperature, application of equations (H.13a) 
to (H.13g) yields 

 y1 = -0,1712 oC S(y1) = 0,0029 oC

y2 = -0,002 18  S(y1) = 0,000 67 oC

r(y1, y2) = -0,930  S = 0,0035 oC

The fact that the slope y2 is more than three times larger than its standard 
uncertainty provides some indication that a calibration curve and not a fixed 
averaged correction is required. 

 The calibration curve may then be written as 

Table H.6 – Data used to obtain a linear calibration curve for a thermometer by the 
method of least squares 

Reading 

number 

Thermometer 

number 

Observed 

correction 

Predicted 

correction 

Difference between 
observed and predicted 

correction 

k tk

(oC) 

bk - tR,k - tk

(oC) 

b(tk)

(oC) 

bk - b(tk)

(oC) 

1 21,521 -0,171 -0,1679 -0031 

2 22,012 -0,169 -0,1668 -0022 

3 22,512 -0,166 -0,1657 -0003 
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4 23,003 -0,159 -0,1646 +0056 

5 23,507 -0,164 -0,1635 -0005 

6 23,999 -0,165 -0,1625 -0025 

7 24,513 -0,156 -0,1614 +0054 

8 25,002 -0,157 -0,1603 +0033 

9 25,503 -0,159 -0,1592 +0002 

10 26,010 -0,161 -0,1581 -0029 

11 26,511 -0,160 -0,1570 -0030 

b(t) = - 0,1712(29) oC

… (H.14) 
 + 0,002 18(67) (t – 20 oC)  

 where the numbers in parentheses are the numerical values of the standard 
uncertainties referred to the corresponding last digits of the quoted results for 
the intercept and slope (see 7.2.2).  This equation gives the predicted value of 
the correction b(t) at any temporary t, and in particular the value b(tk) at t = tk.
These values are given in the fourth column of the table while the last column 
gives the differences between the measured and predicted values, bk - b(tk).  An 
analysis of these differences can be used to check the validity of the linear 
model; formal tests exist (see reference [18]), but are not considered in this 
example. 

H.3.4 Uncertainty of a predicted value 
 The expression for the combined standard uncertainty of the predicted value of 

a correction can be readily obtained by applying the law of propagation of 
uncertainty, equation (16) in 5.2.2, to equation (H.12).  Noting that b(t) = f(y1,
y2) and writing u(y1) = S(y1) and u(y2) = S(y2), one obtains  

 u c
2 [b(t)] = u2(y1) + t – t0)2u2(y2)

… (H.15) 
 + 2(t – t0) u(y1) u(y2) r(y1, y2)

The estimated variance u c
2 [b(t)] is a minimum at tmin = t0 - u(y1) r(y1, y2)/u(y2), 

which in the present case is tmin = 24,0085 oC. 

 As an example of the use of equation (H.15), consider that one requires the 
thermometer correction and its uncertainty at t = 30 oC, which is outside the 
temperature range in which the thermometer was actually calibrated.  
Substituting t = 30 oC in equation (H.14) gives 

 b(30 oC)  =  - 0,1494 oC

while equation (H.15) becomes 
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 u c
2 [b(30 oC)] = (0,0029 oC)2 + (10 oC)2 (0,000 67)2

+ 2(10 oC) (0,0029 oC) (0,000 67) (-0,930)        

 = 17,1 x 10-6 oC-2 

or 

 uc[b(30 oC)] = 0,0041 oC

Thus the correction at 30 oC is –0,1494 oC, with a combined standard 
uncertainty of uc = 0,0041 oC, and with uc having v = n – 2 = 9 degrees of 
freedom. 

H.3.5 Elimination of the correlation between the slope and intercept 
 Equation (H.13e) for the correlation coefficient r(y1, y2) implies that if t0 is so 

chosen that ( )θkk=
n

1∑ = ( )tk=
n

k1∑ (tk – t0) = 0, then r(y1, y2) = 0 and y1 and y2

will be uncorrelated, thereby simplifying the computation of the standard 
uncertainty of a predicted correction.  Since ( )θkk=

n
1∑ = 0 when t0 = t =

( )tk=
n

k1∑ /n, and t = 24,0085 oC in the present case, repeating the least-squares 
fit with t0 = t = 24,0085 oC would lead to values of y1 and y2 that are 
uncorrelated.  (The temperature t is also the temperature at which u2[b(t)] is a 
minimum – see (H.3.4.)  However, repeating the fit is unnecessary because it 
can be shown that 

 b(t) = y1’ + y2(t - t ) … (H.16a) 

 u c
2 [b(t)] = u2(y1’) + (t - t )2u2(y2) … (H.16b) 

 r(y1’, y2) = 0 … (H.16c) 

 and in writing equation (H.16b), the substitutions u2(y1’) and S
2(y2’) have been 

made [see equation (H.15)]. 

 Application of these relations to the results given in H.3.3 yields 

 b(t) = - 0,1625(11) 

 … (H.17a) 
 + 0,002 18(67) (t – 24,0085 oC) 

 u c
2 [b(t)] =  (0,0011)2

… (H.17b) 
 + (t – 24,0085 oC)2 (0,000 67)2

That these expressions give the same results as equations (H.14) and (H.15) can 
be checked by repeating the calculation of b(30 oC) and uc[b(30 oC)].  The 
substitution of t = 30 oC into equations (H.17a) and (H.17b) yields 

 b(30 oC)  =  0,1494 oC

uc[b(30 oC)] = 0,0041 oC
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 which are identical to the results obtained in H.3.4.  The estimated covariance 
between two predicted corrections b(t1) and b(t2) may be obtained from 
equation (H.9) in H.2.3. 

H.3.6 Other considerations 
 The least-squares method can be used to fit higher-order curves to data points, 

and is also applicable to cases where the individual data points have 
uncertainties.  Standard texts on the subject should be consulted for details [8].  
However, the following examples illustrate two cases where the measured 
corrections bk are not assumed to be exactly known. 

1) Let each tk have negligible uncertainty, let each of the n values tR,k be 
obtained from a series of m repeated readings, and let the pooled estimate 
of variance for such readings based on a large amount of data obtained 
over several months be s p

2 . Then the estimated variance of each tR,k is 

S p
2 /m = u 0

2 and each observed correction bk = tR,k – tk has the same 
standard uncertainty u0. Under these circumstances (and under the 
assumption that there is no reason to believe that the linear model is 
incorrect), u__ replaces S2 in equations (H.13c) and (H.13d). 

 NOTE – A pooled estimate of variance S p
2 based on N series of independent observations 

of the same random variable is obtained from 

S p
2 =

v S

v

i i
2

i 1

N

i
i 1

N
=

=

∑

∑

where S i
2 is the experimental variance of the ith series of ni independent repeated 

observations [equation (4) in 4.2.2] and has degrees of freedom vi = ni – 1.  The degrees 
of freedom of S p

2 is v = vii 1
N
=∑ . The experimental variance S p

2 /m (and the experimental 

standard deviation Sp/ m of the arithmetic mean of m independent observations 
characterized by the pooled estimate of variance S p

2 also has v degrees of freedom. 

2) Suppose that each tk has negligible uncertainty, that a correction εk is 
applied to each of the n values tR,k, and that each correction has the same 
standard uncertainty ua. Then the standard uncertainty of each bk = tR,k is 
also ua, and S

2(y1) is replaced by S
2(y1) + u a

2 and S
2(y1’) is replaced by 

S
2(y1’) + u a

2 .

H.4 Measurement of Activity 
 This example is similar to example H.2, the simultaneous measurement of 

resistance and reactance, in that the data can be analysed in two different ways 
but each yields essentially the same numerical result.  The first approach 
illustrates once again the need to take the observed correlations between input 
quantities into account. 
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H.4.1 The measurement problem 
 The unknown randon (222Rn) activity concentration in a water simple is 

determined by liquid-scintillation counting against a randon-in-water standard 
sample having a known activity concentration.  The unknown activity 
concentration is obtained by measuring three counting sources consisting of 
approximately 5 g of water and 12 g of organic emulsion scintillator in vials of 
volume 22 mL: 

Source (a) a standard consisting of a mass ms of the standard solution with a 
known activity concentration; 

Source (b) a matched blank water sample containing no radioactive material, 
used to obtain the background counting rate; 

Source (c) the sample consisting of an aliquot of mass mx with unknown 
activity concentration. 

 Six cycles of measurement of the three counting sources are made in the order 
standard – blank – sample; and each dead-time-corrected counting interval T0
for each source during all six cycles is 60 minutes.  Although the background 
counting rate cannot be assumed to be constant over the entire counting interval 
(65 hours), it is assumed that the number of counts obtained for each blank may 
be used as representative of the background counting rate during the 
measurements of the standard and sample in the same cycle.  The data are given 
in table H.7, where 

tS, tB, tx are the times from the reference time t = 0 to the midpoint of the 
dead-time-corrected counting intervals T0 = 60 min for the 
standard blank, and sample vials, respectively; although tB is given 
for completeness, it is not needed in the analysis; 

CS, CB, Cx are the number of counts recorded in the dead-time-corrected 
counting intervals T0 = 60 min for the standard blank, and sample 
vials, respectively. 

 The observed counts may be expressed as 

 CS = CB + ε AST0mSe-λts … (H.18a) 

 Cx = CB + ε AxT0mxe-λtx … (H.18b) 

 where 

ε is the liquid scintillation detection efficiency for 222Rn for a given 
source composition, assumed to be independent of the activity level; 

AS is the activity concentration of the standard at the reference time t = 0;

Ax is the measurand and is defined as the unknown activity concentration 
of the sample at the reference time t = 0;

mS is the mass of the standard solution; 

mx is the mass of the sample aliquot; 

λ is the decay constant for 222Rn: λ = (1n 2)/T1/2 = 1,258 94 x 10-4 min-1 
(T1/2 = 5505,8 min). 
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Table H.7 – Counting data for determining the activity concentration  
of an unknown sample 

Cycle Standard Blank Sample 

k
tS

(min) 
CS

(counts) 
tB

(min) 
CB

(counts) 
tx

(min) 
Cx

(counts) 

1 243,74 15 380 305,56 4054 367,37 41 432

2 984,53 14 978 1046,10 3922 1107,66 38 706

3 1723,87 14 394 1785,43 4200 1846,99 35 860

4 2463,17 13 254 2524,73 3830 2586,28 32 238

5 3217,56 12 516 3279,12 3956 3340,68 29 640

6 3956,83 11 058 4018,38 3980 4979,94 26 356

Equations (H.18a) and (H.18b) indicate that neither the six individual values of  
CS nor of Cx given in table H.7 can be averaged directly because of the 
exponential decay of the activity of the standard and sample, and slight 
variations in background counts from one cycle to another.  Instead, one must 
deal with the decay-corrected and background-corrected counts (or counting 
rates defined as the number of counts divided by T0 = 60 min).  This suggests 
combining equations (H.18a) and (H.18b) to obtain the following expression for 
the unknown concentration in terms of the known quantities: 

 Ax = f(AS, mS, mx, CS, Cx, CB, tS, tx, λ

= AS
m
m

S

x

( )
( )
C C
C C

t

t
x B

x

S B
s

e
e

−
−

λ

λ … (H.19) 

 = AS
m
m

S

x

( )
( )

( )C C
C C

t tx B

S B

x se
−
−

−λ

where (Cx – CB) e λtx and (CS – CB) e λts are, respectively, the background-
corrected counts of the sample and the standard at the reference time t = 0 and 
for the time interval T0 = 60 min.  Alternatively, one way simply write 

 Ax = f(AS, mS, mx, RS, Rx)

… (H.20) 

 = AS
m
m

S

x

R
R

x

S

where the background-corrected and decay-corrected counting rates Rx and RS
are given by 

 Rx = [Cx – CB)/T0] e λtx … (H.21a) 

 RS = [CS – CB)/T0] e λts … (H.21b) 
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H.4.2 Analysis of data 
 Table H.8 summarizes the values of the background-corrected and decay-

corrected counting rates RS and Rx calculated from equation (H.21a) and 
(H.21b) using the data of table H.7 and λ = 1,258 x 10-4 min-1 as given earlier.  
It should be noted that the ratio R = Rx/RS is most simply calculated from the 
expression 

 [(Cx – CB)/CS – CB)] e λ( )t tx s−

The arithmetic means R S , R x , and R , and their experimental standard 
deviations s( R S ), s( R x ), and ( R ), are calculated in the usual way [equations 
(3) and (5) in 4.2].  The correlation coefficient r( R x , R S ) is calculated from 
equation (17) in 5.2.3 and equation (14) in 5.2.2. 

 Because of the comparatively small variability of the values of Rx and of RS, the 
ratio of means R x and of R S , the ratio of means R / R S and the standard 
uncertainty u( R / R S ) of this ratio are, respectively, very nearly the same as the 
mean ratio R and its experimental standard deviation ( R ) as given in the last 
column of table H.8 [see H.2.4 and equation (H.10) therein].  However, in 
calculating the standard uncertainty u( R / R S ), the correlation between R x and 
R S as represented by the correlation coefficient r( R x , R S ) must be taken into 
account using equation (16) in 5.2.2.  [That equation yields for the relative 
estimated variance of R x / R S the last three terms of equation (H.22b).] 

Table H.8 – Calculation of decay-corrected and background-corrected counting rates 

Cycle
k

Rx

(min-1)
RS

(min-1)
tx - tS

(min) R = Rx/RS

1 652,46 194,65 123,63 3,3520 

2 666,48 208,58 123,13 3,1953 

3 665,80 211,08 123,12 3,1543 

4 655,68 214,17 123,11 3,0615 

5 651,87 213,92 123,12 3,0473 

6 623,31 194,13 123,11 3,2107 

R x = 652,60 R S = 206,09 R = 3,170

S( R x ) = 6,42 S( R S ) = 3,79 S( R ) = 0,046 

S( R x )/ R x = 0,98 x 10-2 S( R S )/ R S = 1,84 x 10-2 S( R )/ R = 1,44 x 10-2 

R x / R S = 3,167
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 u( R x / R S ) = 0,045  

u( R x / R S )/( R x / R S ) = 1,42 x 10-2 

Correlation coefficient 

r( R x )/ R S ) = 0,646 

It should be recognized that the respective experimental standard deviations of 
Rx and of RS, 6 S( R x ) and 6 S( R S ), indicate a variability in these quantities 
that is two to three times larger than the variability implied by the Poisson 
statistics of the counting process; the latter is included in the observed 
variability of the counts and need not be accounted for separately. 

H.4.3 Calculation of final results 
 To obtain the unknown activity concentration Ax and its combined standard 

uncertainty uc(Ax) from equation (H.20) requires AS, mx, and mS and their 
standard uncertainties.  These are given as 

 AS = 0,1368 Bq/g 

 u(AS) = 0,0018 Bq/g;    u(AS)/AS = 1,32 x 10-2 

mS = 5,0192 g 

 u(mS) = 0,005 g;    u(mS)/mS = 0,10 x 10-2 

mx = 5,0571 g 

 u(mx) = 0,0010 g;    u(mx)/mx = 0,02 x 10-2 

Other possible sources of uncertainty are evaluated to be negligible: 

- standard uncertainties of the decay times, u(tS,k) and u(tx,k); 

- standard uncertainty of the decay constant of 222Rn, u(λ) = 1 x 10-7 min-1.
(The significant quantity is the decay factor exp[λ(tx – tS), which varies 
from 1,015 63 for cycles k = 4 and 6 to 1,015 70 for cycle k = 1.  The 
standard uncertainty of these values is u = 1,2 x 10-5;

- uncertainty associated with the possible dependence of the detection 
efficiency of the scintillation counter on the source used (standard, blank, 
and sample); 

- uncertainty of the correction for counter dead-time and of the correction 
for the dependence of counting efficiency on activity level. 

H.4.3.1 Result approach 1 
 As indicated earlier, Ax and uc(Ax) may be obtained in two different ways from 

equation (H.20).  In the first approach, Ax is calculated using the arithmetic 
mean R x and R S , which leads to 
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 Ax =
m
m

S

x

R
R

x

S
= 0,4300 Bq/g             … (H.22a) 

 

Application of equation (16) in 5.2.2 to this expression yields for the combined 
variance u c

2 (Ax)

u A
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2

2
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2
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 +  
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S
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2

2
( )  +  u R

R
S
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2

2
( )  … (H.22b) 

 

- 2 r( R x , R S ) u R u R
R R

S

S

( ) ( )x

x

where, as noted in H.4.2, the last three terms give u2( R x / R S )/( R x / R S )2, the 
estimated relative variance of R x / R S . Consistent with the discussion of H.2.4, 
the results in table 8 show that R is not exactly equal to R x / R S ; and that the 
standard uncertainty u( R x / R S ) of R x / R S is not exactly equal to the standard 
uncertainty S( R ) of R .

Substitution of the values of the relevant quantities into equation (H.22a) and 
(H.22b) yields 

 
u A

A
c x

x

2

2
( )

 = 1,93 x 10-2 

uc(Ax) = 0,0083 Bq/g 

 The result of the measurement may then be stated as: 

 Ax = 0,4300 Bq/g with a combined standard uncertainty of uc = 0,0083 
Bq/g. 

H.4.3.2 Results:  approach 2 

 In the second approach, which avoids the correlation between R x and R S , As

is calculated using the arithmetic mean R . Thus 

 Ax =
m
m

S

x
R = 0,4304 Bq/g             … (H.23a) 

 The expression for u c
2 (Ax) is simply 

 
u A

A
c x

x

2

2
( )

 =  
u A

A
S

S
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2
( )

 +  
u m

m
S

S

2

2
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… (H.23b) 
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 +
u m

m
x

x

2

2
( )

 + u R

R

2

2
( )  

which yields 

 
u A

A
c x

x

( )
 = 1,95 x 10-2 

uc(Ax) = 0,0084 Bq/g 

 The result of the measurement may then be stated as: 

 Ax = 0,4304 Bq/g with a combined standard uncertainty of uc = 0,0084 
Bq/g. 

 The effective degrees of freedom of uc can be evaluated using the Welch-
Satterthwire formula in the manner illustrated in H.1.6.  

 As in H.2, of the two results, the second is preferred because it avoids 
approximating the mean of a ratio of two quantities by the ratio of the means of 
the two quantities; and it better reflects the measurement procedure used – the 
data were in fact collected in separate cycles. 

 Nevertheless, the difference between the values of Ax resulting from the two 
approaches is clearly small compared with the standard uncertainty ascribed to 
either one, and the difference between the two standard uncertainties is entirely 
negligible.  Such agreement demonstrates that the two approaches are 
equivalent when the observed correlations are properly included. 

H.5 Analysis of variance 
 This example provides a brief introduction to analysis of variance (ANOVA) 

methods.  These statistical techniques are used to identify and quantify 
individual random effects in a measurement so that they may be properly taken 
into account when the uncertainty of the result of the measurement is evaluated.  
Although ANOVA methods are applicable to a wide range of measurements, 
for example, the calibration of reference standards, such as Zener voltage 
standards and standards of mass, and the certification of reference materials, 
ANOVA methods by themselves cannot identify systematic effects that might 
be present. 

 There are many different models included under the general name of ANOVA.  
Because of its importance, the specific model discussed in this example is the 
balanced nested design.  The numerical illustration of this model involves the 
calibration of a Zener voltage standard; the analysis should be relevant to a 
variety of practical measurement situations. 

 ANOVA methods are of special importance in the certification of reference 
materials (RMs) by interlaboratory testing, a topic covered thoroughly in ISO 
Guide 35 [19] (see H.5.3.2 for a brief description of such RM certification).  
Since much of the material contained in ISO Guide 35 is in fact broadly 
applicable, that publication may be consulted for additional details concerning 
ANOVA, including unbalanced nested designs.  References [15] and [20] may 
be similarly consulted. 
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H.5.1 The measurement problem 
 Consider a nominally 10 V Zener voltage standard that is calibrated against a 

stable voltage reference over a two-week period.  On each of J days during the 
period, K independent repeated observations of the potential difference VS of 
the standard are made.  If Vjk denotes the kth observation of VS (k = 1, 2, . . . K)
on the jth day (j = 1, 2, . . . ., J), the best estimate of the potential difference of 
the standard is the arithmetic mean V of the JK observations [see equation (3) 
in 4.2.1), 

 VS = 1
JK

V jk
k=

K

j

J

11
∑∑

=
= V … (H.24a) 

 The experimental standard deviation of the mean S(V ), which is a measure of 
the uncertainty of V as an estimate of the potential difference of the standard, is 
obtained from [see equation (5) in 4.2.3]. 

 VS = 1
1JK(JK - )

( )V -Vjk
k=

K

j

J 2

11
∑∑

=
… (H.24b) 

 NOTE – It is assumed throughout this example that all corrections applied to the observations 
to compensate for systematic effects have negligible uncertainties or their uncertainties are 
such that they can be taken into account at the end of the analysis.  A correction in this latter 
category, and one that can itself be applied to the mean of the observations at the end of the 
analysis.  A correction in this latter category, and one that can itself be applied to the mean of 
the observations at the end of the analysis, is the difference between the certified value 
(assumed to have a given uncertainty) and the working value of the stable voltage reference 
against which the Zener voltage standard is calibrated.  Thus the estimate of the potential 
difference of the standard obtained statistically from the observations is not necessarily the 
final result of the measurement; and the experimental standard deviation of that estimate is not 
necessarily the combined standard uncertainty of the final result. 

 The experimental standard deviation of the mean S(V ) as obtained from 
equation (H.24b) is an appropriate measure of the uncertainty of V only if the 
day-to-day variability of the observations made on a single day.  If there is 
evidence that the between-day variability is significantly larger than can be 
expected from the within-day variability, use of this expression could lead to a 
considerable understatement of the uncertainty of V . Two questions thus arise:  
How should one decide if the between-day variability (characterized by a 
between-day component of variance) is significant in comparison with the 
within-day variability (characterized by a within-day component of variance) 
and, if it is, how should one evaluate the uncertainty of the mean? 

H.5.2 A numerical example 
H.5.2.1 Data which allow the above questions to be addressed are given in table H.9 

where 

 J = 10 is the number of days on which potential-difference observations 
were made; 

 K = 5 is the number of potential-difference observations made on each 
day; 



SAUDI STANDARD SASO…./2006

١١٩

 V j = 1
K

V jk
k

K

=
∑

1
… (H.25a) 

 is the arithmetic mean of the K = 5 potential-difference observations made on 
the jth day (there are J = 10 such daily means); 

 V = 1
J

V j
j

J

=
∑

1

… (H.25b) 

 = 1
JK

V jk
k=

K

j

J

11
∑∑

=

is the experimental variance of the K = 5 observations made on the jth day 
(there are J = 10 such estimates of variance); and 

 S
2(Vjk) = 1

1K -
( )V Vjk j

k

K
−∑

=

2

1
… (H.25c) 

 is the experimental variance of the J = 10 daily means (there is only one such 
estimate of variance). 

 S
2(V j ) = 1

1K -
( )V Vj

j

J
−∑

=

2

1
… (H.25d) 

 is the experimental variance of the J = 10 daily means (there is only one such 
estimate of variance). 

Table H.9 – Summary of voltage standard calibration data obtained on J = 10 days, 
with each daily mean V j and experimental standard deviation S(Vjk) based on K = 5 

independent repeated observations 

Day, j

Quantity 

1 2 3 4 5

V j /V 10,000 172 10,000 116 10,000 013 10,000 144 10,000 106

S(Vjk)/µV 60 77 111 101 67 

Day, j

Quantity 

6 7 8 9 10

V j /V 10,000 031 10,000 060 10,000 125 10,000 163 10,000 041

S(Vjk)/µV 93 80 73 88 86 

V = 10,000 097 V S(V j ) = 57 µV

S a
2 = KS

2(V j ) = 5(57 µV)2 = (128 µV)2
S b

2 =
S jkV2 ( )

 =  (85 µV)2
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H.5.2.2 The consistency of the within-day variability and between-day variability of the 
observations can be investigated by comparing two independent estimates of 
σ w

2 , the within-day component of variance (that is, the variance of observations 
made on the same day). 

 The first estimate of σ w
2 denoted by S a

2 , is obtained from the observed variation 
of the daily means V j . Since V j is the average of K observations, its estimated 
variance S

2(V j ), under the assumption that the between-day component of 
variance is zero, estimates σ w

2 /K. It then follows from equation (H.25d) that 

 S a
2 = KS

2(V j )
… (H.26a) 

 = K
J -1

( )V Vj
j

J
−∑

=

2

1

which is an estimate of σ w
2 having va = J – 1 = 9 degrees of freedom. 

 The second estimate of σ w
2 , denoted by S b

2 , is the pooled estimate of variance 
obtained from the J = 10 individual values of S

2(Vjk) using the equation of the 
note to H.3.6, where the ten individual values are calculated from equation 
(H.25c).  Because the degrees of freedom of each of these values is vi = K – 1,
the resulting expression for S b

2 is simply their average.  Thus 

 S b
2 =

S jkV2 ( )
 =  1

J S
j

J 2

1=
∑ (Vjk)

… (H.26b) 

 = 1
1J K -( )

 ( )V -Vjk j
k=

K

j

J 2

11
∑∑

=

which is an estimate of σ w
2 having vb = J(K – 1) = 40 degrees of freedom. 

 The estimates of σ w
2 given by equations (H.26a) and (H.26b) are S a

2 = (128 
µV)2 and S b

2 = (85 µV)2, respectively (see table H.9).  Since the estimate S a
2 is 

based on the variability of the daily means while the estimate S b
2 is based on the 

variability of the daily observations, their difference indicates the possibility 
presence of an effect that varies from one day to another but that remains 
relatively constant when observations are made on any single day.  The F-test is 
used to test this possibility, and thus the assumption that the between-day 
component of variance is zero. 

H.5.2.3 The F-distribution is the probability distribution of the ratio F(va, vb) = S a
2 (va)

S b
2 (vb), of the variance σ2 of a normally distributed random variable [15].  The 

parameters va and vb are the respective degrees of freedom of the two estimates 
and 0 ≤ F(va, vb) < ∞. Values of F are tabulated for different values of va and vb
and various quantities of the F-distribution.  A value of F(va, vb) > F0,95 or F(va,
vb) > F0,975 (the critical value) is usually interpreted as indicating that S a

2 (va) is 
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larger than S b
2 (vb) by a statistically significant amount; and that the probability 

of a value of F as large as that observed, if the two estimates were estimates of 
the same variance, is less than 0,05 or 0,025, respectively.  (Other critical 
values may also be chosen, such as F0,99.) 

H.5.2.4 The application of the F-test to the present numerical example yields 

 F(va, vb) =
S

S

a

b

2

2 =
K V

V

S
j

S
jk

2

2

( )

( )
 

… (H.27) 

 = 5 2

2
(57 )
(85 )

µ
µ

V
V

= 2,25

with va = J – 10 = 9 degrees of freedom in the numerator and vb = J(K – 1) = 40
degrees of freedom in the denominator.  Since F0,95(9,40) = 2,12 and 
F0,975(9,40) = 2,45, it is concluded that there is a statistically significant 
between-day effect at the 5 percent level of significance but not at the 2,5 
percent level. 

H.5.2.5 If the existence of a between-day effect is rejected because the difference 
between S a

2 and S b
2 is not viewed as statistically significant (an imprudent 

decision because it could lead to an underestimate of the uncertainty), the 
estimate variance S

2(V ) of V should be calculated from equation (H.24b).  
That relation is equivalent to pooling the estimates S a

2 and S b
2 (that is, taking a 

weighted average of S a
2 and S b

2 , each weighted by its respective degrees of 
freedom va and vb – see H.3.6, note) to obtain the best estimate of the variance 
of the observations; and dividing that estimate by JK, the number of 
observations, to obtain the best estimate S

2(V ) of the variance of the mean of 
the observations.  Following this procedure one obtains 

 S
2(V ) = ( ) ( )

( )
J J K

JK JK

S S− + −
−

1 1
1

2 2
a b  

… (H.28a) 

 = 9 128 40
10 49

2 2( ) (85 )
( ) (5) ( )
µ µV V+

= (13 µV)2 , or s(V ) = 13 µV … (H.28b) 

 with S2(V ) having JK – 1 = 49 degrees of freedom. 

 If it is assumed that all corrections for systematic effects have already been 
taken into account and that all other components of uncertainty are 
insignificant, then the result of the calibration can be stated as VS = V = 10,000 
0097 V (see table H.9), with a combined standard uncertainty of S

2(V ) = uc
having 49 degrees of freedom. 

 NOTES 
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1 In practice, there would very likely be additional components of uncertainty that were 
significant and therefore would have to be combined with the component of uncertainty 
obtained statistically from the observations (see H.5.1, note). 

2 Equation (H.28a) for S
2(V ) can be shown to be equivalent to equation (H.24b) by 

writing the double sum, denoted by S, in that equation as 

 S = [ ]( ) ( )V V V Vjk j j
k

K

j

J
− + −∑∑

== 11

H.5.2.6 If the existence of a between-day effect is accepted (a prudent decision because 
it avoids a possible underestimate of the uncertainty) and it is assumed to be 
random, then the variance S

2(V j ) calculated from the J = 10 daily means 
according to equation (H.25d) estimates not σ w

2 /K as postulated in H.5.2.2, but 
σ w

2 /K + σB
2 , where σB

2 is the between-day random component of variance.  
This implies that 

 S
2(V j ) = S w

2
/K + S B

2
… (H.29) 

 where  S w
2

estimates σ w
2 and S B

2
estimates σB

2 . Since S
2(Vjk) calculated from 

equation (H.26b) depends only on the within-day variability of the 

observations, one may takes S w
2

= S
2(Vjk).  Thus the ratio KS

2(V j )/ S
jkV

2
( )  

used for the F-test in H.5.2.4 becomes 

 F =
K S j

S
jk

V

V

2

2
( )

( )
 =  

S S

S

Kw B

w

2 2

2
+

… (H.30) 

 = 5 2

2
(57 )
(85 )

µ
µ

V
V

= 2,25 

 which then leads to 

 S B
2

=
K V V

K

S j S
jk

2 2
( ) ( )−

… (H.31a) 
 = (43  µV)2, or SB = 43 µV

S w
2

= S
jkV

2
( )  =  (85 µV)2, or SB = 43 µV … (H.31b) 

 The estimated variance of V is obtained from S2(V j ), equation (H.25d), because 

S
2(V j ) properly reflects both the within-day and between-day random 

components of variance [see equation (H.29)].  Thus 

 S
2(V ) = S

2(V j ) / J

… (H.32) 
 = (57 µV)2 /10, or S2(V ) = 18 µV
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 with S(V ) having J – 1 = 9 degrees of freedom. 

 The degrees of freedom of S w
2

(and thus sw) is J(K – 1) = 40 [see equation 

(H.26b)].  The degrees of freedom of S B
2

(and thus sB) is the effective degrees 

of freedom of the difference S B
2

= S
2(V j ) - S

2(Vjk)/K [equation (H.31a)], but its 
estimation is problematic 

H.5.2.7 The best estimate of the potential difference of the voltage standard is then VS =
V = 10,000 097 V, with S() = uc = 18 µV as given in equation (H.32).  This 
value of uc and its 9 degrees of freedom are to be compared with uc = 13 µV
and its 49 degrees of freedom, the result obtained in H.5.2.5 [equation (H.28b)] 
when the existence of a between-day effect was rejected. 

 In a real measurement an apparent between-day effect should be further 
investigated, if possible, in order to determine its cause and whether a 
systematic effect is present that would negate the use of ANOVA methods.  As 
pointed out at the beginning of this example, ANOVA techniques are designed 
to identify and evaluate components of uncertainty arising from random effects; 
they cannot provide information about components arising from systematic 
effects. 

H.5.3 The role of ANOVA in measurement 
H.5.3.1 This voltage standard example illustrates what is generally termed a balanced, 

one-stage nested design.  It is a one-stage nested design because there is one 
level of “nesting” of the observations with one factor, the day on which 
observations are made, being varied in the measurement.  It is balanced because 
the same number of observations is made on each day.  The analysis presented 
in the example can be used to determine if there is an “operator effect,” an 
“instrument effect,” a “laboratory effect,” a “sample effect,” or even a “method 
effect” in a particular measurement.  Thus in the example, one might imagine 
replacing the observations made on the J different days by observations made 
on the same day but by J different operators; the between-day component of 
variance becomes then a component of variance associated with different 
operators. 

H.5.3.2 As noted in H.5, ANOVA methods are widely used in the certification of 
reference materials (RMs) by interlaboratory testing.  Such certification usually 
involves having a number of independent, equally component laboratories 
measure samples of a material for the property for which the material is to be 
certified.  It is generally assumed that the differences between individual 
results, both within and between laboratories, are statistical in nature regardless 
of the causes.  Each laboratory mean is considered an unbiased estimate of the 
property of the material, and usually the unweighted mean of the laboratory 
means is assumed to be the best estimate of that property. 

 An RM certification might involved I different laboratories, each of which 
measures the requisite property of J different samples of the material, with each 
measurement of a sample consisting of K independent repeated observations.  
Thus the total number of observations is I/K and the total number of samples is 
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IJ. This is an example of a balanced, two-stage nested design analogous to the 
one-stage voltage-standard example above.  In this case there are two levels of 
“nesting” of the observations with two different factors, sample and laboratory, 
being varied in the measurement.  The design is balanced because each sample 
is observed the same number of times (K) in each laboratory and each 
laboratory measures the same number of samples (J).  In further analogy with 
the voltage- standard example, in the RM case the purpose of the analysis of the 
data is to investigate the possible existence of a between-samples effect and a 
between-laboratories effect, and to determine the proper uncertainty to assign to 
the best estimate of the value of the property to be certified.   In keeping with 
the previous paragraph, that estimate is assumed to be the mean of the I
laboratory means, which is also the mean of the IJK observations. 

H.5.3.3 The importance of varying the input quantities upon which a measurement 
result depends so that its uncertainty is based on observed data evaluated 
statistically is pointed out in 3.4.2.  Nested designs and the analysis of the 
resulting data by ANOVA methods can be successfully used in many 
measurement situations encountered in practice. 

 Nonetheless, as indicated in 3.4.1, varying all input quantities is rarely feasible 
due to limited time and resources; at best, in most practical measurement 
situations, it is only possible to evaluate a few components of uncertainty using 
ANOVA methods.  As pointed out in 4.3.1, many components must be 
evaluated by scientific judgement using all of the available information on the 
possible variability of the input quantities in question; in many instances an 
uncertainty component, such as arises from a between-samples effect, a 
between-laboratories effect, a between-instruments effect, or a between-
operators effect, cannot be evaluated by the statistical analysis of series of 
observations but must be evaluated from the available pool of information. 

H.6 Measurements on a reference scale: hardness 
 Hardness is an example of a physical concept that cannot be quantified without 

reference to a method of measurement; it has no unit that is independent of such 
a method.  The quantity “hardness” is unlike classical measurable quantities in 
that it cannot be entered into algebraic equations to define other measurable 
quantities (though it is sometimes used in empirical equations that relate 
hardness to another property for a category of materials).  Its magnitude is 
determined by a conventional measurement, that of a linear dimension of an 
indentation in a block of the material of interest, or sample block.  The 
measurement is made according to a written standard, which includes a 
description of the “indentor,” the construction of the machine by which the 
indentor is applied, and the way in which the machine is to be operated.  There 
is more than one written standard, so there is more than one scale of hardness. 

 The hardness reported is a function (depending on the scale) of the linear 
dimension that is measured.  In the example given in this sub-clause it is a 
linear function of the arithmetic mean or average of the depths of five repeated 
indentations, but for some other scales the function is nonlinear. 
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 Realization of the standard machine are kept as national standards (there is no 
international standard realization); a comparison between a  particular machine 
and the national standard machine is made using a transfer-standard block. 

H.6.1 The measurement problem 
 In this example the hardness of a sample block of material is determined on the 

scale “Rockwell C” using a machine that has been calibrated against the 
national standard machine.  The scale unit of Rockwell-C hardness is 0,002 
mm, with hardness on that scale defined as 100 x (0,002 mm) minus the 
average of the depths, measured in mm, of five indentations.  The value of that 
quantity divided by the Rockwell scale unit 0,002 mm is called the “HRC 
hardness index.”  In this example the quantity is called simply “hardness,” 
symbol hRockwell C, and the numerical value of hardness expressed in Rockwell 
units of length is called the “hardness index,” symbol HRockwell C.

H.6.2 Mathematical model 
 To the average of the depths of the indentations made in the sample block by 

the machine used to determine its hardness, or calibration machine, must be 
added corrections to determine the average of the depths of the indentations that 
would have been made in the same block by the national standard machine.  
Thus 

 hRockwell C = f( , ∆c , ∆b , ∆S)

= 100 (0,002 mm) – d … (H.33a) 

 - ∆c - ∆b - ∆S

HRockwell C = hRockwell C / (0,002 mm)            … (H.33b) 

 where 

d is the average of the depths of five indentations made by the 
calibration machine in the sample block; 

∆c is the correction obtained from a comparison of the calibration 
machine with the national standard machine using a transfer-standard 
block, equal to the average of the depths of 5m indentations made by 
the national standard machine in this block, minus the average of the 
depths of 5n indentations made in the same block by the calibration 
machine; 

∆b is the difference in hardness (expressed as a difference of average 
depth of indentations) between the two parts of the transfer-standard 
block used respectively for indentations by the two machines, 
assumed zero; and 

∆S is the error due to the lack of repeatability of the national standard 
machine and the incomplete definition of the quantity hardness.  
Although ∆S must be assumed to be zero, it has a standard uncertainty 
associated with it of u(∆S). 
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 Since the partial derivatives ∂f/∂d , ∂f/∂ ∆c , ∂f/∂ ∆b , and ∂f/∂ ∆S of the 
functions of equation (H.33a) are all equal to –1, the combined standard 
uncertainty u c

2 (h) of the hardness of the sample block as measured by the 
calibration machine is simply given by 

 u c
2 (h) = u2( d ) + (∆c)

… (H.34) 
 + u2(∆b) + u2(∆S)

where for simplicity of notation h ≡ hRockwell C.

H.6.3 Contributory variances 

H.6.3.1 Uncertainty of the average depth of indentation d of the sample block, 
u( d )
Uncertainty of repeated observations.  Strict repetition of an observation is not 
possible because a new indentation cannot be made on the site of an earlier one.  
Since each  indentation  must  be made on a  different site,  any  variation  in 
the results includes the effect of variations in hardness between different sites.  
Thus u( d ), the standard uncertainty of the average of the depths of five 
indentations in the  sample block by the calibration  machine,  is taken  as 
Sp(dk)/ 5 , where Sp(dk) is the pooled experimental standard deviation of the 
depths of indentations determined by “repeated” measurements on a block 
known to have very uniform hardness (see 4.2.4). 

 Uncertainty of indication.  Although the correction to d due to the display of 
the calibration machine in zero, there is an uncertainty in d due to the 
uncertainty of the indication of depth due to the resolution δ of the display 
given by u2(δ) = δ2/12 (see F.2.2.1).  The estimated variance of d is thus 

 u2( d ) = Sp(dk)/5 + δ2/12             … (H.35) 

H.6.3.2 Uncertainty of the correction  for the  difference between the two 
machines, u(∆c)

As indicated in H.6.2, ∆c is the correction for the difference between the 
national standard machine and the calibration machine.  The correction may be 
expressed as ∆c = zS

' - z’, where zS
' = ( ) /,z mii

m
S=∑ 1 is the average depth of the 

5m indentations made by the national standard machine in the transfer-standard 
block; and z’ = ( ) /z nii

n
=∑ 1 is the average depth of the 5n indentations made in 

the same block by the calibration machine.  Thus, assuming that for the 
comparison the uncertainty due to the resolution of the display of each machine 
is negligible, the estimated variance of ∆c is  

 u2(∆c) =
S z

m
av S
2

( )
 +

S z
n

av
2

( )  … (H.36) 

 where 
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 S av
2

( )z S [ ( )] /,iS
i
m z m

2
1 S=∑ is the average of the experimental variances of the 

means of each of the m series of indentations ZS,ik made by the standard 
machine; 

 S av
2

( )z [ ( )] /S
i
n z n

2
1 i=∑ is the average of the experimental variances of the 

means of each of the n series of indentation Zik made by the calibration 
machine. 

 NOTE – The variances S av
2

( )z S and S av
2 ( )z are pooled estimates of variance – see the 

discussion of equation (H.26b) in H.5.2.2. 

H.6.3.3 Uncertainty of the correction due to variations in the hardness of the 
transfer-standard block, u(∆b)
OIML International Recommendation R 12, Verification and calibration of 
Rockwell C hardness standardized blocks, requires that the maximum and 
minimum depths of indentation obtained from five measurements on the 
transfer-standard block shall not differ by more than a fraction x of the average 
depth of indentation, where x is a function of the hardness level.  Let, therefore, 
the maximum difference in the depths of indentation over the entire block be 
xz’, where z’ is as defined in H.6.3.2 with n = 5. Also let the maximum 
difference be described by a triangular probability distribution about the 
average values xz’/2 (on the likely assumption that values near the central value 
are more probable than extreme values – see 4.3.9).  Then, if in equation (9b) in 
4.3.9 a = xz’/2, the estimated variance of the correction to the average depth of 
indentation due to differences of the hardness presented respectively to the 
standard machine and the calibration machine is 

 u(∆b) = (xz’)2/24                … H.37) 

 As indicated in H.6.2, it is assumed that the best estimate of the correction ∆b
itself is zero. 

H.6.3.4 Uncertainty of the national standard machine and the definition of 
hardness u(∆S)
The uncertainty of the national standard machine together with the uncertainty 
due to incomplete definition of the quantity hardness is reported as an estimated 
standard deviation u(∆S) (a quantity of dimension length). 

H.6.4 The combined standard uncertainty, uc(h)
Collection of the individual terms discussed in H.6.3.1 to H.6.3.4 and their 
substitution into equation (H.34) yields for the estimated variance of the 
measurement of hardness 

 u hc
2 ( )  =

S d
2

5
( )k + δ2

12
+

S z
m

av S
2

( )  

… (H.38) 

 +
S z

n
av
2

( )  + ( ' )xz 2

24
+ u2(∆S)
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 and the combined standard uncertainty is uc(h)

Table H.10 – Summary of data for determining the hardness of a sample block on the 
scale Rockwell C 

Source of uncertainty Value 

Average depth d of 5 indentations made by the 
calibration machine in the sample block: 0,072 mm 

36,0 Rockwell scale unit 

Indicated hardness index of the sample block from 
the 5 indentations: 

HRockwell C = hRockwell C/0,002 mm) = 

[100(0,002 mm) – 0,072 mm]/(0,002 mm) (see 
H.6.1) 

64,0 HRC 

Pooled experimental standard deviation Sp(dk) of
the depths of indentations made by the calibration 
machine in a block having uniform hardness 

0,45 Rockwell scale unit 

Resolution δ of the display of the calibration 
machine 

0,1 Rockwell scale unit 

S av
2

( )z S , square root of the average of the 
experimental variances of the means of m series of 
indentations made by the national standard machine 
in the transfer-standard block 

0,10 Rockwell scale unit, m = 6

S av
2

( )z , square root of the average of the 
experimental variances of the means of n series of 
indentations made by the calibration machine in the 
transfer-standard block 

0,11 Rockwell scale unit, n = 6

Permitted fractional variation x of the depth of 
penetration in the transfer-standard block 

1,5 x 10-2 

Standard uncertainty u(∆S) of the national standard 
machine and definition of hardness 

0,5 Rockwell scale unit 

H.6.5 Numerical example 
 The data for this example are summarized in table H.10. 

 The scale is Rockwell C, designated HRC.  The Rockwell scale unit is 0,002 
mm, and thus in table H.10 and in the following it is understood that (for 
example) ’36,0 Rockwell scale unit” means 36,0 x (0,002 mm) = 0,072 mm and 
is simply a convenient way of expressing the data and results. 

 If the values for the relevant quantities given in table H.10 are substituted into 
equation (H.38), one obtains the following two expressions: 
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 u hc
2 ( )  = 0 45

5

2,


 + 0 1

12

2, + 0 10
6

2, + 0 11
6

2,

+ ( , , ) ,0 015 36 0
24

0 5
2

2x +



 (Rockwell scale unit)2

= 0,307 (Rockwell scale unit)2

uc(h) = 0,55 Rockwell scale unit = 0,0011 mm 

 where for the purpose of the calculation of uncertainty it is adequate to take z’ = 
d = 36,0 Rockwell scale unit. 

 Thus, if it is assumed that ∆c = 0, the hardness of the sample block is 

 HRockwell C = 64,0 Rockwell scale unit or 0,1280 mm with a combined 
standard uncertainty of uc = 0,55 Rockwell scale unit or 0,0011 mm. 

 The hardness of the block is hRockwell C /(0,002 mm) = (0,1280 mm)/(0,002 mm), 
or 

 HRockwell C = 64,0 HRC with a combined standard uncertainty of uc = 0,55
HRC. 

 In addition to the component of uncertainty due to the national standard 
machine and the definition of hardness, u(∆S) = 0,5 Rockwell scale unit, the 
significant components of uncertainty are those of the repeatability of the 
machine, Sp(dk)/ 5 = 0,20 Rockwell scale unit; and the variation of the 
hardness of the transfer-standard block, which is (xz’)2/24 = 0,11 Rockwell 
scale unit.  The effective degrees of freedom of uc can be evaluated using the 
Welch-Satterthwaite formula in the manner illustrated in H.1.6. 
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Annex J 
 

Glossary of principal symbols 
 

a Half-width of a rectangular distribution of possible values of input quantity 
Xi: a = (a+ - a-)/2 

 
a+ Upper bound, or upper limit, of input quantity Xi

a- lower bound, or lower limit, of input quantity Xi

b+ Upper bound, or upper limit, of the deviation of input quantity Xi from its 
estimate xi: b+ = a+ - xi

b- Lower bound, or lower limit, of the deviation of input quantity Xi from its 
estimate xi: b- = xi a-

ci Partial derivative or sensitive coefficient: ci = ∂f/∂xi

f Functional relationship between measurand Y and input Xi on which Y
depends, and between output estimate y and input estimates xi on which y
depends 

 
∂f/∂xi Partial derivative with respect to input quantity Xi of functional relationship 

f between measurand Y and input quantities Xi on which Y depends, 
evaluated with estimates xi for the Xi: ∂f/∂xi = ∂f/∂xi xi, x2, …….. xN

k Coverage factor used to calculate expanded uncertainty U = kuc(y) of output 
estimate y from its combined standard uncertainty uc(y), where Up defines an 
interval Y = y ± U having a high, specified level of confidence p

kp Coverage factor used to calculate expanded uncertainty Up = kpuc(y) of
output estimate y from its combined standard uncertainty uc(y), where Up

defines an interval Y = y ± U having a high, specified level of confidence p

n Number of repeated observations 
 
N Number of input quantities Xi on which measurand Y depends 
 
P Probability; level of confidence: 0 ≤ p ≤ 1

q Randomly varying quantity described by a probability distribution 
 
q Arithmetic mean or average of n independent repeated observations qk of 

randomly-varying quantity q; estimate of the expectation or mean µq of the 
probability distribution of q
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qk kth independent repeated observation of randomly-varying quantity q

r(xi, xj) Estimate correlation coefficient associated with input estimates xi and xj that 
estimate input quantities Xi and Xj: r(xi, xj) = u(xi, xj)/u(xi)s(xj)

R( iX , jX ) Estimated correlation coefficient of input means iX and jX , determined 
from n independent pairs of repeated simultaneous observations Xi,k and Xj,k 
of Xi and Xj: r( iX , jX ) = r( iX , jX )/s( iX )s( jX )

r(yi, yj) Estimated correlation coefficient associated with output estimates yi and yj
when two or more measurands or output quantities are determined in the 
same measurement 

 
S 2

p
Combined or pooled estimate of variance 

 
Sp Pooled experimental standard deviation, equal to the positive square root of 

S 2
p

s2( q ) Experimental variance of the mean q ; estimate of the variance σ2/n of q :
s2( q ) = s2(qk)/n; estimated variance obtained from a Type A evaluation 

 
s( q ) Experimental standard deviation of the mean q , equal to the positive square 

root of s2( q ); s( q ) is a biased estimator of σ( q ) (see C.2.21, note); standard 
uncertainty obtained from a Type A evaluation 

 
s2(qk) Experimental variance determined from n independent repeated 

observations qk of q; estimate of the variance σ2 of the probability 
distribution of q

s(qk) Experimental standard deviation, equal to the positive square root of s2(qk); 
s(qk) is a biased estimator of the standard deviation σ of the probability 
distribution of q

s2( iX ) Experimental variance of input mean iX , determined from n independent 
repeated observations Xi,k of Xi; estimated variance obtained from a Type A 
evaluation 

 
s( iX ) Experimental standard deviation of input mean iX , equal to the positive 

square root of s2( iX ); standard uncertainty obtained from a Type A 
evaluation 
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s( q , r ) Estimate of the covariance of means q and r that estimate the expectations 

µq and µr of two randomly-varying quantities q and r, determined from n
independent pairs of repeated simultaneous observations qk and rk of q and 
r; estimated covariance obtained from a Type A evaluation 

 
s( iX , jX ) Estimate of the covariance of input means iX and jX , determined from n

independent pairs of repeated simultaneous observations Xi,k and Xj,k of Xi
and Xj; estimated covariance obtained from a Type A evaluation 

 
tp(v) t-factor from the t-distribution for v degrees of freedom corresponding to a 

given probability p

tp(veff) t-factor from the t-distribution for veff degrees of freedom corresponding to a 
given probability p, used to calculate expanded uncertainty Up

u2(xi) Estimated variance associated with input estimate xi that estimates input 
quantity Xi

NOTE – When xi is determined from the arithmetic mean or average of n

independent repeated observations, u2(xi) = s2( iX ) is an estimated variance 
obtained from a Type A evaluation 

u(xi) Standard uncertainty of input estimated xi that estimates input quantity Xi,
equal to the positive square root of u2(xi)

NOTE – When xi is determined from the arithmetic mean or average of n
independent repeated observations, u(xi) = s( iX ) is a standard uncertainty 
obtained from a Type A evaluation 

u(xi, xj) Estimated covariance associated with two input estimates xi and xj that 
estimates input quantities Xi and Xi

NOTE – When xi and xj are determined from n independent pairs of repeated 

simultaneous observations, u(xi, xj) = s( iX , jX ) is an estimated covariance 
obtained from a Type A evaluation 

)(2 yu c
Combined variance associated with output estimate y

uc(y) Combined standard uncertainty of output estimate y, equal to the positive 
square root of )(2 yu c

ucA(y) Combined standard uncertainty of output estimate y determined from 
standard uncertainties and estimated covariances obtained from a Type A 
evaluations alone 

 
ucB(y) Combined standard uncertainty of output estimate y determined from 

standard uncertainties and estimated covariances obtained from a Type B 
evaluations alone 
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uc(yi) Combined standard uncertainty of output estimate yi when two or more 

measurands or output quantities are determined in the same measurement 
 

)(2 yu i Component of combined variance )(2 yu c associated with output estimate y
generated by estimated variance u2(xi) associated with input estimate xi:

)(2 yu i = [ciu(xi)]2

ui(y) Component of combined standard uncertainty uc(y) of output estimate y 
generated by the standard uncertainty of input estimate xi: ui(y) ≡ cju(xi)

ui(yi, yj) Estimated covariance associated with output estimates yi and yj determined 
in the same measurement 

 
u(xi)/xj Relative standard uncertainty of input estimate xi

uc(y)/y Relative combined standard uncertainty of output estimate y

[u(xi)/xi]2 Estimated relative variance associated with input estimate xi

[uc(y)/y]2 Relative combined variance associated with output estimate y

ji xx
xjxiu )),( Estimated relative covariance associated with input estimates xi and xj

U Expanded uncertainty of output estimate y that defines an interval Y = y ± U
having a high level of confidence, equal to coverage factor k times the 
combined standard uncertainty uc(y) of y: U = kuc(y)

Up Expanded uncertainty of output estimate y that defines an interval Y = y ± U
having a high, specified level of confidence p, equal to coverage factor kp
times the combined standard uncertainty uc(y) of y: Up = kpuc(y)

xi Estimate of input quantity Xi
NOTE – When xi is determined from the arithmetic mean or average of n
independent repeated observations, xi = iX

Xi ith input quantity on which measurand Y depends 
NOTE – Xi may be the physical quantity or the random variable (see 4.1.1, note 1) 

iX Estimate of the value of input quantity Xi, equal to the arithmetic mean or 
average of n independent repeated observations Xi,k of Xi

Xi,k Kth independent repeated observation of Xi

y Estimate of measurand Y; result of a measurement; output estimate 
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yi Estimate of measurand Yi when two or more measurands are determined in 
the same measurement 

 
Y A measurand 
 

)(
)(

i

i

xu
xu∆ Estimated relative uncertainty of standard uncertainty u(xi) of input estimate 

xi

µq Expectation or mean of the probability distribution of randomly-varying 
quantity q

v Degrees of freedom (general) 
 
vi Degrees of freedom, or effective degrees of freedom, of standard uncertainty 

u(xi) of input estimate xi

veff Effective degrees of freeom of uc(y), used to obtain tp(veff) for calculating 
expanded uncertainty Up

veffB Effective degrees of freedom of a combined standard uncertainty determined 
from standard uncertainties from Type B evaluations alone 

 
σ2 Variance of a probability distribution of (for example) a randomly-varying 

quantity q, estimated by s2(qk)

σ Standard deviation of a probability distribution, equal to the positive square 
root of ; σ2 s(qk)

σ2( q ) Variance of q , equal to σ2/n, estimated by s2( q ) = s2(qk)/n

σ( q ) Standard deviation of q , equal to the positive square root of σ2( q ); s( q ) is 
a biased estimator of σ( q )

σ2[s( q )] Variance of experimental standard deviation s( q ) of q

σ[s( q )] Standard deviation of experimental standard deviation s( q ) of q , equal to 
the positive square root of σ[s( q )] 
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